Skip to main content
Log in

Analysing dielectric dispersion of 0.64PMN–0.36PT ceramics using electrical conductivity

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A new approach of using AC conductivity as function of frequency and temperature has been proposed for analysing ferroelectric ceramic materials, especially those having Debye-type dielectric dispersion. A theoretical model for the AC conductivity has been validated with the measurements performed on 0.64PMN–0.36PT ceramic material. It has been found that the slope of the conductivity vs. frequency curve of the material having Debye-type dielectric dispersion shows a significant change at a certain frequency, called knee frequency, which shifts towards the high-frequency side when the temperature is increased. The signature parameters of the electrical conductivity curve have been identified that can be used for a quick estimate of the dielectric dispersion behaviour of the material. The difference in the slope of the two regions, separated by the knee frequency, is found to have a strong correlation with the relaxation time distribution factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Yu P, Ji Y, Neumann N, Lee S, Luo H and Es-Souni M 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 1983

    Article  Google Scholar 

  2. Kazys R J, Sliteris R and Sestoke J 2015 Proc. IEEE Int. Ultrason. Symp. p 5

  3. Zhang Z, Li F, Chen R, Zhang T, Cao X, Zhang S et al 2018 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65 223

    Article  Google Scholar 

  4. Fei C, Yang Y, Guo F, Lin P, Chen Q, Zhou Q et al 2018 IEEE Trans. Biomed. Eng. 65 2087

    Article  Google Scholar 

  5. Wattananukulchai P and Isarakorn D 2019 Proc. ECTI-CON 2018-15th Int. Conf. Electr. Eng. Comput. Telecommun. Inf. Technol. p 188

  6. HussainA, Sinha N, Bhandari S, Yadav H and Kumar B 2016 J. Asian Ceram. Soc. 4 337

  7. Singh A K and Pandey D 2003 Phys. Rev. B 67 064102

    Article  Google Scholar 

  8. Singh A K and Pandey D 2006 Phys. Rev. B 74 024101

    Article  Google Scholar 

  9. Singh A K, Pandey D and Zaharko O 2006 J. Appl. Phys. 99 076105

    Article  Google Scholar 

  10. Singh A K and Pandey D 2011 Ferroelectrics 326 91

    Article  Google Scholar 

  11. Fang Z, Tian X, Zheng F, Jiang X, Ye W, Qin Y et al 2022 Ceram. Int. 48 7550

    Article  CAS  Google Scholar 

  12. Roed E S, Andersen K K, Bring M, Tichy F, Asjord E M and Hoff L 2019 Proc. IEEE Int. Ultrason. Symp. p 1781

  13. Zhang Z 2020 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67 2085

    Article  Google Scholar 

  14. Zhang Q, Su M, Li F, Liu R, Cai R, Li G et al 2020 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67 2354

    Article  Google Scholar 

  15. Ren M, Xia W, Xing J, Yang J and Liang Y 2021 Proc. IEEE Int. Symp. Appl. Ferroelectrics p 1

  16. Chen H, Mirg S, Osman M, Agarwal S, Cai J, Biskowitz R et al 2021 IEEE Sensors Lett. 5 5

    Google Scholar 

  17. Wang X, Wang Y, Zhang Y, Wang H, Gu Z and Zou H 2021 Ceram. Int. 12 3

    Google Scholar 

  18. Li J, Zhou G, Hong Y, He W, Wang S, Chen Y et al 2022 Sens. Actuators A: Phys. 337 113415

    Article  CAS  Google Scholar 

  19. Jiang Z, Hou C, Fei C, Li Z and Ye Z G 2022 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 69 795

    Article  Google Scholar 

  20. Jia H, Mi J, Li Z and Wang L 2021 Ceram. Int. 11 1

    Google Scholar 

  21. Saxena A, Hussain A, Saxena A, Joseph A J and Saxena R S 2022 Ceram. Int. 48 26258

    Article  CAS  Google Scholar 

  22. Fu H and Cohen R H 2000 Nature 403 281

    Article  CAS  Google Scholar 

  23. Cole K S and Cole R H 1941 J. Chem. Phys. 9 341

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank Dr Abid Hussain, Assistant Professor, ARSD College, University of Delhi, for providing the measurement data. We are also grateful to the Principal of Hindu College, Principal of Hansraj College, University of Delhi, and Director SSPL, Delhi, for their support and encouragement to carry out this work and publish it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghvendra Sahai Saxena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, A., Saxena, A. & Saxena, R.S. Analysing dielectric dispersion of 0.64PMN–0.36PT ceramics using electrical conductivity. Bull Mater Sci 46, 124 (2023). https://doi.org/10.1007/s12034-023-02965-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-02965-9

Keywords

Navigation