Skip to main content
Log in

Biosynthesis of copper oxide nanoparticles using extract from Daucus carota L leaves and the antibacterial activity against foodborne bacteria

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Research interest continues to grow in the field of green synthesis routes to nanomaterials, specifically on the biologically relevant metal oxide nanoparticles that have antimicrobial potency. This green approach allows the utilization of extracts of different parts of plants such as leaves, barks, fruits and flowers for the synthesis of nanomaterials. In the present study, the leaf extract of Daucus carota L has been used to prepare copper oxide (CuO) nanoparticles (NPs). The synthesized NPs have been characterized by several techniques such as X-ray diffraction analysis, ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, transmission and scanning electron microscopy and energy dispersive X-ray analysis. The absorption spectroscopy showed a maximum absorption peak around 300 nm, while the electronic microscopies confirmed a spherical morphology with an average particle size of 47 nm. The CuO NPs were screened against foodborne pathogenic bacteria including Salmonella enterica Typhimurium ATCC 14028, Listeria monocytogenes ATCC 19117, Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 6538. An agar well diffusion method was utilized for the antimicrobial assay and the minimum inhibitory concentrations were determined. The biosynthesized CuO NPs exhibited more antibacterial potency against the Gram +ve bacteria compared to Gram −ve bacteria. The results obtained were encouraging and recommend CuO NPs as an alternative antimicrobial agent in food preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Beheshtkhoo N, Kouhbanani M A J, Savardashtaki A, Amani A M and Taghizadeh S 2018 Appl. Phys. A 124 1

    Article  CAS  Google Scholar 

  2. Singh J, Dutta T, Kim K H, Rawat M, Samddar P and Kumar P 2018 J. Nanobiotechnol. 16 1

    Article  Google Scholar 

  3. Chen G, Zhou H, Ma W, Zhang D, Qiu G and Liu X 2011 Solid State Sci. 13 2137

    Article  CAS  Google Scholar 

  4. Rahnama A and Gharagozlou M 2012 Opt. Quantum Electron. 44 313

    Article  CAS  Google Scholar 

  5. Grigore M E, Biscu E R, Holban A M, Gestal M C and Grumezescu A M 2016 Pharmaceuticals 9 75

    Article  Google Scholar 

  6. Zhu J, Bi H, Wang Y, Wang X, Yang X and Lu L 2007 Mater. Lett. 61 5236

    Article  CAS  Google Scholar 

  7. Chopra R, Kashyap N, Kumar A and Banerjee D 2020 Int. J. Eng. Res. Tech. 9 258

    Google Scholar 

  8. Hassan K H, Jarullah A A and Saadi S K 2017 Int. J. Appl. Environ. 12 1841

    Google Scholar 

  9. Xu J, Ji W, Shen Z, Tang S, Ye X, Jia D et al 1999 J. Solid State Chem. 147 516

    Article  CAS  Google Scholar 

  10. Fan H, Yang L, Hua W, Wu X, Wu Z, Xie S et al 2003 Nanotechnology 15 37

    Article  Google Scholar 

  11. Vijaya Kumar R, Elgamiel R, Diamant Y, Gedanken A and Norwig J 2001 Langmuir 17 1406

    Article  Google Scholar 

  12. Naika H R, Lingaraju K, Manjunath K, Kumar D, Nagaraju G, Suresh D et al 2015 J. Taibah Univ. Sci. 9 7

    Article  Google Scholar 

  13. Bharathi D, Ranjithkumar R, Chandarshekar B and Bhuvaneshwari V 2019 Int. J. Biol. Macromol. 141 476

    Article  CAS  Google Scholar 

  14. Sathiyavimal S, Vasantharaj S, Bharathi D, Mythili S, Manikandan E, Kumar S S et al 2018 J. Photochem. Photobiol. B 188 126

    Article  CAS  Google Scholar 

  15. Jayakumarai G, Gokulpriya C, Sudhapriya R, Sharmila G and Muthukumaran C 2015 Appl. Nanosci. 5 1017

    Article  CAS  Google Scholar 

  16. Kumar P, Shameem U, Kollu P, Kalyani R and Pammi S 2015 BioNanoScience 5 135

    Article  Google Scholar 

  17. Sankar R, Manikandan P, Malarvizhi V, Fathima T, Shivashangari K S and Ravikumar V 2014 Spectrochim. Acta A Mol. Biomol. Spectrosc. 121 746

    Article  CAS  Google Scholar 

  18. Cuevas R, Durán N, Diez M, Tortella G and Rubilar O 2015 J. Nanomater. 2015 1

    Article  Google Scholar 

  19. Padil V V T and Černík M 2013 Int. J. Nanomed. 8 889

    Google Scholar 

  20. Simon P W, Freeman R E, Vieira J V, Boiteux L S, Briard M, Nothnagel T et al 2008 In Vegetables II, Springer p 327

  21. Babic I, Amiot M J, Nguyen-The C and Aubert S 1993 J. Food Sci. 58 351

    Article  CAS  Google Scholar 

  22. Block G 1994 Am. J. Epidemiol. 139 290

    Article  CAS  Google Scholar 

  23. Hansen S L, Purup S and Christensen L P 2003 J. Sci. Food Agric. 83 1010

    Article  CAS  Google Scholar 

  24. Kidmose U, Hansen S L, Christensen L P, Edelenbos M, Larsen E and Nørbæk R 2004 J. Food Sci. 69 S388

    Article  CAS  Google Scholar 

  25. Hager T and Howard L 2006 HortScience 41 74

    Article  CAS  Google Scholar 

  26. Hashimoto T and Nagayama T 2004 J. Food Hyg. Soc. Japan 39 324

    Article  Google Scholar 

  27. Vaidehi D, Bhuvaneshwari V, Bharathi D and Sheetal B P 2018 Mater. Res. Express 5 085403

    Article  Google Scholar 

  28. Narayanan M, Srinivasan B, Sambantham M T, Al-Keridis L A and AL-mekhlafi F A 2022 J. King Saud Univ. Sci. 34 101885

    Article  Google Scholar 

  29. Ahamed M, Alhadlaq H A, Khan M A M, Karuppiah P and Al-Dhabi N A 2014 J. Nanomater. 2014 637858

    Article  Google Scholar 

  30. Meghana S, Kabra P, Chakraborty S and Padmavathy N 2015 RSC Adv. 5 12293

    Article  CAS  Google Scholar 

  31. Larson A C and Von Dreele R B 1994 Gsas Report lAUR. 86

  32. Asbrink S and Waskowska A 1991 J. Condens. Matter Phys. 3 8173

    Article  Google Scholar 

  33. Gulluce M, Sahin F, Sokmen M, Ozer H, Daferera D, Sokmen A et al 2007 Food Chem. 103 1449

    Article  CAS  Google Scholar 

  34. Chérif I, Dkhil Y O, Smaoui S, Elhadef K, Ferhi M and Ammar S 2022 J. Clust. Sci. https://doi.org/10.1007/s10876-022-02248-z

  35. Güven K, Yücel E and Cetintaş F 2006 Pharm. Biol. 44 79

    Article  Google Scholar 

  36. Yallappa S, Manjanna J, Sindhe M, Satyanarayan N, Pramod S and Nagaraja K 2013 Spectrochim. Acta A Mol. Biomol. Spectrosc. 110 108

    Article  CAS  Google Scholar 

  37. Badri A, Slimi S, Guergueb M, Kahri H and Mateos X 2021 Inorg. Chem. Commun. 134 109027

    Article  CAS  Google Scholar 

  38. Rafique M, Shafiq F, Ali Gillani S S, Shakil M, Tahir M B and Sadaf I 2020 Optik 208 164053

    Article  CAS  Google Scholar 

  39. Yugandhar P, Vasavi T, Uma Maheswari Devi P and Savithramma N 2017 Appl. Nanosci. 7 417

    Article  CAS  Google Scholar 

  40. Bhavyasree P and Xavier T 2021 Adv. Chem. Eng. 8 100152

    Article  Google Scholar 

  41. Mali S C, Dhaka A, Githala C K and Trivedi R 2020 Biotechnol. Rep. 27 e00518

    Article  Google Scholar 

  42. Shah I H, Ashraf M, Sabir I A, Manzoor M A, Malik M S, Gulzar S et al 2022 J. Mol. Struct. 1259 132696

    Article  CAS  Google Scholar 

  43. Radhakrishnan R, Khan F L A, Muthu A, Manokaran A, Savarenathan J S and Kasinathan K 2021 Lett. Appl. Nanobiosci. 10 2706

    Article  Google Scholar 

  44. Andualem W W, Sabir F K, Mohammed E T, Belay H H and Gonfa B A 2020 J. Nanotechnol. 2020 1

    Article  Google Scholar 

  45. Ijaz F, Shahid S, Khan S A, Ahmad W and Zaman S Trop. J. Pharm. Res. 16 743

  46. Pugazhendhi A, Kumar S S, Manikandan M and Saravanan M 2018 Microb. Pathog. 122 84

    Article  CAS  Google Scholar 

  47. Amin F, Khattak B, Alotaibi A, Qasim M, Ahmad I, Ullah R et al 2021 Evid. Based Complement. Altern. Med. 2021 89

    Article  Google Scholar 

  48. Erci F, Cakir-Koc R, Yontem M and Torlak E 2020 Prep. Biochem. Biotechnol. 50 538

    Article  CAS  Google Scholar 

  49. Ren G, Hu D, Cheng E W, Vargas-Reus M A, Reip P and Allaker R P 2009 Int. J. Antimicrob. Agents 33 587

    Article  CAS  Google Scholar 

  50. Kim J H, Cho H, Ryu S E and Choi M U 2000 Arch. Biochem. Biophys. 382 72

    Article  CAS  Google Scholar 

  51. Gopalakrishnan K, Ramesh C, Ragunathan V and Thamilselvan M 2012 Dig. J. Nanomater. Biostruct. 7 833

    Google Scholar 

  52. Altikatoglu M, Attar A, Erci F, Cristache C M and Isildak I 2017 Fresenius Environ. Bull. 25 7832

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian C Onwudiwe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sellami, H., Ben Smida, Y., Smaoui, S. et al. Biosynthesis of copper oxide nanoparticles using extract from Daucus carota L leaves and the antibacterial activity against foodborne bacteria. Bull Mater Sci 45, 250 (2022). https://doi.org/10.1007/s12034-022-02848-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02848-5

Keywords

Navigation