Skip to main content
Log in

Glassy network structure of CaO-SiO2 and CaO-Al2O3-SiO2 systems

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Local structure environment and network structure of multicomponent oxide systems [CaO-SiO2 (brief as CS) and CaO-Al2O3-SiO2 (brief as CAS)] at 3500 K are investigated by molecular dynamics simulation. The local structure environment of atoms is clarified via investigation of pair-radial distribution function, coordination number distribution and topology of basic coordination units. Network structure of TOx-polyhedra (T = Al, Si; x = 3, 4, 5, 6) is clarified through investigation of distribution of linkage types. Incorporation mechanism of Ca2+ cations into glassy network, aluminium avoidance as well as the compositional and structural heterogeneities (micro-phase separation) in CS and CAS melts are also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bouhadja M, Jakse N and Pasturel A 2013 J. Chem. Phys. 138 224510

    Article  CAS  Google Scholar 

  2. Kai Gong and Claire E White 2022 Cem. Concr. Res. 152 106650

    Article  Google Scholar 

  3. Zhe Wang, Guanghua Wen, Qiang Liu, Shuheng Huang, Ping Tang and Liang Yu 2020 J. Non-Cryst. Solids 531 119851

    Article  CAS  Google Scholar 

  4. Luu-Gen Hwa 1998 J. Non-Cryst. Solids 238 193

    Article  CAS  Google Scholar 

  5. Laurent Cormier, Dominique Ghale, Daniel R Neuville, Jean-Marc Delaye and Georges Calas 2002 J. Non-Cryst. Solids 332 255

  6. Sylwia Kucharczyk, Maciej Sitarz, Maciej Zajac and Jan Deja 2018 Spectrochim. Acta Part A: Mol. Biomol. Spectr. 194 163

    Article  CAS  Google Scholar 

  7. Magali Benoit and Simona Ispas 2001 Phys. Rev B 64 224205

    Article  Google Scholar 

  8. Jeffrey R Allwardt, Sung Keun Lee and Jonathan F Stebbins 2003 J. Am. Miner. 88 949

  9. Neuville D R, Cormier L and Massiot D 2006 J. Chem. Geol. 229 173

    Article  CAS  Google Scholar 

  10. Muniz R F, De Ligny D, Martinet C, Sandrini M, Medina A N, Rohling J H et al 2016 J. Phys.: Condens. Matter 28 315402

    CAS  Google Scholar 

  11. Doweidar H 2017 J. Non-Cryst. Solids 471 344

    Article  CAS  Google Scholar 

  12. Yang Chen, Weijie Pan, Boran Jia, Qiangqiang Wang, Xubin Zhang, Qian Wang et al 2021 J. Non-Cryst. Solids 552 120435

    Article  CAS  Google Scholar 

  13. Jakse N, Bouhadja H, Kozaily J, Drewitt J W E, Hennet L, Neuville D R et al 2012 Appl. Phys. Lett. 101 201903

    Article  Google Scholar 

  14. Kai Zheng, Zuotai Zhang, Feihua Yang and Seetharaman Sridhar 2012 ISIJ Int. 3 349

    Google Scholar 

  15. Philip S Salmon, James W E Drewitt and Anita Zeidler 2016 Sci. Rev. 3 22

  16. James W E Drewitt, Sandro Jahn, Viviana Cristiglio, Aleksei Bytchkov, Marlène Leydier, Séverine Brassamin et al 2011 J. Phys.: Condens. Matter 23 155101

  17. Hehlen B and Neuville D R 2015 J. Phys. Chem. B 119 4093

    Article  CAS  Google Scholar 

  18. Sung Keun Lee and Jonathan F Stebbins 2000 J. Phys. Chem. B 104 4091

  19. Ganster P, Benoit M, Delaye J-M and Kob W 2007 J. Mol. Simul. 13 1093

    Article  Google Scholar 

  20. Jeffrey R Allwardt, Jonathan F Stebbins, Hidenori Terasaki, Lin-Shu Du, Daniel J Frost, Anthony C Withers et al 2007 J. Am. Miner. 92 1093

  21. Patrick Ganster, Magali Benoit, Walter Kob and Jean-Marc Delaye 2004 J. Chem. Phys. 21 10172

    Article  Google Scholar 

  22. Stebbins J F, Oglesby J V and Kroeker S 2001 J. Am. Miner. 86 1307

    Article  CAS  Google Scholar 

  23. James W E Drewitt, Sandro Jahn, Chrystele Sanloup, Charlotte de Grouchy, Gaston Garbarino and Louis Hennet 2015 J. Phys.: Condens. Matter 27 105103

  24. Huang Shi-Ping, You Jing-Pin, Jiang Guo-Chang, F Yoshida and Xu Kuang-Di 2000 Chin. Phys. Lett. 4 279

    Article  Google Scholar 

  25. Xin Feng, Wen Yao and Jiangling Li 2021 J. Non-Cryst. Solids 574 121141

    Article  CAS  Google Scholar 

  26. Abdulnour Y Toukmaji and John A Board Jr 1996 J. Comput. Phys. Commun. 95 73

  27. Shu Q F and Chou K-C 2013 J. Ironmak. Steelmak. 8 571

    Article  Google Scholar 

  28. Philippe Courtial and Donald B Dingwel 1995 J. Geochim. et Cosmochim. Acta 18 3685

  29. Jabraoui H, Malki M, Hasnaoui A, Badawi M, Ouaskit S, Lebègue S et al 2017 Phys. Chem. Chem. Phys. 19 19083

    Article  CAS  Google Scholar 

  30. Shengfu Zhang, Xi Zhang, Haijun Peng, Liangying W E N, Guibao Qiu, Meilong Hu et al 2014 ISIJ Int. 4 734

  31. Wu Yong-quan, Jiang Guo-chang, You Jing-lin, Hou Huai-yu and Chen Hui 2004 J. Cent. South Univ. Technol. 11 6

    Article  Google Scholar 

  32. Hicham Jabraoui, Michael Badawi, Sébastien Lebègue and Yann Vaills 2018 J. Non-Cryst. Solids 499 142

    Article  CAS  Google Scholar 

  33. Louis Hennet, James W E Drewitt, Daniel R Neuville, Viviana Cristiglio, Jad Kozaily, Séverine Brassamin et al 2016 J. Non-Cryst. Solids 451 89

  34. Laurent Cormier, Daniel R Neuville and Georges Calas 2000 J. Non-Cryst. Solids 274 110

  35. Petkov V, Billinge S J L, Shastri S D and Himmel B 2000 Phys. Rev. Lett. 85 3436

    Article  CAS  Google Scholar 

  36. Achraf Atilaa, El Mehdi Ghardia, Abdellatif Hasnaouic and Said Ouaskita 2019 J. Non-Cryst. Solids 525 119470

  37. Yong Quan Wu 2004 J. Chem. Phys. 121 7883

  38. Alfonso Pedone, Thibault Charpentier and Maria Cristina Menziania 2010Phys. Chem. Chem. Phys. 12 6054

  39. Shiping Huang, Guochang Jiang, Jinglin You, Yoshida F and Kuangdi Xu 2000 Metall. Mater. Trans. B 31 1241

    Article  Google Scholar 

  40. Yoshio Waseda and Toguri J M 1977 Metall. Mater. Trans. B 8 563

    Article  Google Scholar 

  41. Nobumasa Funamori and Shino Yamamoto 2004 J. Geophys. Res. 109 B03203

  42. Yong-quan Wu, Guo-chang Jiang, Jing-lin You, Huai-yu Ho and Chen Hui 2004 J. Cent. South Univ. Technol. 11 6

    Article  Google Scholar 

  43. Jingjing Liu, Ji Zou, Muxing Guo and Nele Moelans 2018 Comput. Mater. Sci. 144 126

    Article  CAS  Google Scholar 

  44. Ting Wu, Shengping He, Yijie Liang and Qian Wang 2015 J. Non-Cryst. Solids 411 145

    Article  Google Scholar 

Download references

Acknowledgements

This simulation is carried on high-performance computing system in RIKEN. Representative laboratory at RIKEN: RIKEN Cluster for Pioneering Research, Theoretical Quantum Physics Laboratory and RIKEN Center for Computational Science, Discrete Event Simulation Research Team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Van Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, N.V., Huong, N.V. & Lan, M.T. Glassy network structure of CaO-SiO2 and CaO-Al2O3-SiO2 systems. Bull Mater Sci 45, 139 (2022). https://doi.org/10.1007/s12034-022-02715-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02715-3

Keywords

Navigation