Skip to main content

Advertisement

Log in

Dynamic probing of structural evolution for Co50Ni50 metallic glass during pressurized cooling using atomistic simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this study, firstly favorable glass–forming composition for the binary Co–Ni alloy is identified as Co50Ni50 based on statistically evaluated thermodynamic parameters such as mixing enthalpy (∆Hmix), mixing entropy (∆Smix), and topological parameter such as atomic size difference (δ). Secondly, molecular dynamics (MD) simulations have been performed to investigate the glass–forming ability (GFA) and cluster evolution during the rapid solidification (7.67 K/ps) of Co50Ni50 under hydrostatic pressure (0, 0.25, 0.50, 1, 1.25, 2, 3, 5 GPa). It has been observed that with increasing pressure, glass transition temperature (Tg) also increases thereby increasing the GFA of Co50Ni50. Moreover, Voronoi cluster analysis reveals that quasi–icosahedral type clusters such as <0281> and <0282>, mixed types of cluster such as <0363>, <0364>, <1254>, and <0372> and crystal type clusters such as <0443> and <0444> have maximum population among the other clusters at different pressures at Co as well as Ni-centered atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Lee HJ, Cagin T, Johnson WL, Goddard WA (2003) Criteria for formation of metallic glasses: the role of atomic size ratio. J. Chem. Phys. 119:9858–9870. https://doi.org/10.1063/1.1615494

    Article  CAS  Google Scholar 

  2. Suryanarayana C, Inoue A (2011) Bulk metallic glasses. CRC Press, Boca Raton

    Google Scholar 

  3. Lai L, He R, Ding K, Liu T, Liu R, Chen Y, Guo S (2019) Ternary Co–Mo–B bulk metallic glasses with ultrahigh strength and good ductility. J. Non-Cryst. Solids 524:119657. https://doi.org/10.1016/j.jnoncrysol.2019.119657

    Article  CAS  Google Scholar 

  4. Celtek M, Sengul S (2018) Thermodynamic and dynamical properties and structural evolution of binary Zr80Pt20 metallic liquids and glasses: molecular dynamics simulations. J. Non-Cryst. Solids 498:32–41. https://doi.org/10.1016/j.jnoncrysol.2018.06.003

    Article  CAS  Google Scholar 

  5. Zhonga C, Cao QP, Wang XD, Zhang DX, Fecht HJ, Jiang JZ (2017) Relationship of deformation mode with strain–dependent shear transformation zone size in Cu–Zr metallic glasses using molecular dynamics simulations. J. Non-Cryst. Solids 469:45–50. https://doi.org/10.1016/j.jnoncrysol.2017.04.008

    Article  CAS  Google Scholar 

  6. Mo J, Liu H, Zhang Y, Wang M, Zhang L, Liu B, Yang W (2017) Effects of pressure on structure and mechanical property in monatomic metallic glass. J. Non-Cryst. Solids 464:1–4. https://doi.org/10.1016/j.jnoncrysol.2017.03.013

    Article  CAS  Google Scholar 

  7. Li Y, Zhao S, Liu Y, Gong P, Schroers J (2017) How many bulk metallic glasses are there? ACS Comb. Sci. 19:687–693. https://doi.org/10.1021/acscombsci.7b00048

    Article  CAS  PubMed  Google Scholar 

  8. Park ES, Chang HJ, Kyeong JS, Kim DH (2008) Role of minor addition of metallic alloying elements in formation and properties of Cu–Ti–rich bulk metallic glasses. J. Mater. Res. 23:1995–2002. https://doi.org/10.1557/JMR.2008.0246

    Article  CAS  Google Scholar 

  9. Wang J, Li R, Hua N, Zhang T (2011) Co-based ternary bulk metallic glasses with ultrahigh strength and plasticity. J. Mater. Res. 26:2072–2079. https://doi.org/10.1557/jmr.2011.187

    Article  CAS  Google Scholar 

  10. Chattopadhyay C, Satish Idury KSN, Bhatt J, Mondal K, Murty BS (2016) Critical evaluation of glass forming ability criteria. Mater. Sci.Technol 32:380–400. https://doi.org/10.1179/1743284715Y.0000000104

    Article  CAS  Google Scholar 

  11. Zhang K, Wang M, Papanikolaou S, Liu Y, Schroers J, Shattuck MD, O'Hern CS (2013) Computational studies of the glass–forming ability of model bulk metallic glasses. J. Chem. Phys. 139:124503. https://doi.org/10.1063/1.4821637

    Article  CAS  PubMed  Google Scholar 

  12. Jiang JZ, Gerward L, Xu YS (2002) Pressure effect on crystallization kinetics in bulk glass. Appl. Phys. Lett. 81:4347–4349. https://doi.org/10.1063/1.1527227

    Article  CAS  Google Scholar 

  13. Caris J, Lewandowski JJ (2010) Pressure effects on metallic glasses. Acta Mater. 58:1026–1036. https://doi.org/10.1016/j.actamat.2009.10.018

    Article  CAS  Google Scholar 

  14. Vatamanu LO, Lewandowski JJ (2013) Pressure and temperature effects on tensile strength and plasticity of metallic glasses. Mech. Matter. 67:86–93. https://doi.org/10.1016/j.mechmat.2012.11.011

    Article  Google Scholar 

  15. Liu LF, Yang J, Hu J, Li HQ, Guo SB (2013) Effect of hydrostatic pressure on shear banding behaviors in bulk metallic glasses. Mater. Lett. 93:289–292. https://doi.org/10.1016/j.matlet.2012.11.032

    Article  CAS  Google Scholar 

  16. Feng SD, Jiao W, Jing Q, Qi L, Pan SP, Li G, Ma MZ, Wang WH, Liu RP (2016) Structural evolution of nanoscale metallic glasses during high–pressure torsion: a molecular dynamics analysis. Sci. Rep. 6:36627. https://doi.org/10.1038/srep36627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miyazaki N, Wakeda M, Wang YJ, Ogata S (2016) Prediction of pressure–promoted thermal rejuvenation in metallic glasses. Npj Comp. Mater. 2:16013. https://doi.org/10.1038/npjcompumats.2016.13

    Article  Google Scholar 

  18. Wang C, Yang ZZ, Ma T, Sun YT, Yin YY, Gong Y, Gu L, Wen P, Zhu PW, Long YW, Yu XH, Jin CQ, Wang WH, Bai HY (2017) High stored energy of metallic glasses induced by high pressure. Appl. Phys. Lett. 110:111901. https://doi.org/10.1063/1.4978600

    Article  CAS  Google Scholar 

  19. Mishra S, Pal S (2018) Variation of glass transition temperature of Al90Sm10 metallic glass under pressurized cooling. J. Non-Cryst. Solids 500:249–259. https://doi.org/10.1016/j.jnoncrysol.2018.08.006

    Article  CAS  Google Scholar 

  20. Zhou Z, Wang H, Li M (2019) Hydrostatic pressure effect on metallic glasses: a theoretical prediction. J. Appl. Phys. 126:145901. https://doi.org/10.1063/1.5118221

    Article  CAS  Google Scholar 

  21. Andrew R L (2001) Molecular modeling principles and applications, 2nd, editor, Pearson Education Limited

  22. Sun Y, Zhang Y, Zhang F, Ye Z, Ding Z, Wang CZ, Ho KM (2016) Cooling rate dependence of structural order in Al90Sm10 metallic glass. J. Appl. Phys. 120:015901. https://doi.org/10.1063/1.4955223

    Article  CAS  Google Scholar 

  23. Hufnagel TC, Schuh CA, Falk ML (2016) Deformation of metallic glasses: recent developments in theory, simulations, and experiments. Acta Mater. 109:375–393. https://doi.org/10.1016/j.actamat.2016.01.049

    Article  CAS  Google Scholar 

  24. Ding J, Ma E (2017) Computational modeling sheds light on structural evolution in metallic glasses and supercooled liquids. Npj Comput. Mater 9:1–12. https://doi.org/10.1038/s41524-017-0007-1

    Article  CAS  Google Scholar 

  25. Zhong C, Zhang H, Cao QP, Wang XD, Zhang DX, Ramamurty U, Jiang JZ (2016) Deformation behavior of metallic glasses with shear band like atomic structure: a molecular dynamics study. Sci. Rep. 6:30935. https://doi.org/10.1038/srep30935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bailey NP, Schiøtz J, Jacobsen KW (2004) Simulation of Cu–Mg metallic glass: thermodynamics and structure. Phys. Rev. B 69:144205. https://doi.org/10.1103/PhysRevB.69.144205

  27. Wang XD, Yin S, Cao QP, Jiang JZ, Franz H, Jin ZH (2008) Atomic structure of binary Cu64.5Zr35.5 bulk metallic glass. Appl. Phys. Lett. 92:011902. https://doi.org/10.1063/1.2828694

    Article  CAS  Google Scholar 

  28. Lu BF, Kong LT, Laws KJ, Xu WQ, Jiang Z, Huang YY, Ferry M, Li JF, Zhou YH (2018) EXAFS and molecular dynamics simulation studies of Cu–Zr metallic glass: short–to–medium range order and glass forming ability. Mater. Charact. 414:41–48. https://doi.org/10.1016/j.matchar.2018.04.036

    Article  CAS  Google Scholar 

  29. Sheng HW, Ma E, Kramer MJ (2012) Relating dynamic properties to atomic structure in metallic glasses. JOM 64:856–881. https://doi.org/10.1007/s11837-012-0360-y

    Article  CAS  Google Scholar 

  30. Gulenko A, Chung LF, Gao J, Todd I, Hannon AC, Martin RA, Christie JK (2017) Atomic structure of Mg–based metallic glasses from molecular dynamics and neutron diffraction. Phys. Chem. Chem. Phys. 19:8504–8515. https://doi.org/10.1039/C6CP03261C

    Article  CAS  PubMed  Google Scholar 

  31. Kumar V, Fujita T, Konno K, Matsuura M, Chen MW, Inoue A, Kawazoe Y (2011) Atomic and electronic structure of Pd40Ni40P20 bulk metallic glass from ab initio simulations. Phys. Rev B 84:134204. https://doi.org/10.1103/PhysRevB.84.134204

  32. Srivastava AP, Das N, Sharma SK, Sinha AK, Srivastava D, Pujari PK, Dey GK (2016) Investigation of medium range order and glass forming ability of metallic glass Co69FexSi21−xB10 (x= 3, 5, and 7). J. Phys. D. Appl. Phys. 49:225303. https://doi.org/10.1088/0022-3727/49/22/225303

    Article  CAS  Google Scholar 

  33. Mukhtar A, Mehmood T, Wu KM (2017) Investigation of phase transformation of CoNi alloy nanowires at high potential. IOP Conf. Ser Mater. Sci. Eng. 239:012017. https://doi.org/10.1088/1757-899X/239/1/012017

    Article  Google Scholar 

  34. Zhang Y, Zhou YJ, Lin JP, Chen GL, Liaw PK (2008) Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10:534–538. https://doi.org/10.1002/adem.200700240

    Article  CAS  Google Scholar 

  35. Guo S, Liu CT (2011) Phase stability in high entropy alloys: formation of solid–solution phase or amorphous phase. Prog. Nat. Sci. Mater. Inter. 21:433–446. https://doi.org/10.1016/S1002-0071(12)60080-X

    Article  Google Scholar 

  36. Tsai MH, Yeh JW (2014) High–entropy alloys: a critical review. Mater. Res. Lett. 2:107–123. https://doi.org/10.1080/21663831.2014.912690

    Article  CAS  Google Scholar 

  37. Yang X, Zhang Y (2012) Prediction of high–entropy stabilized solid–solution in multi–component alloys. Mater. Chem. Phys. 132:233–238. https://doi.org/10.1016/j.matchemphys.2011.11.021

    Article  CAS  Google Scholar 

  38. Guo S (2015) Phase selection rules for cast high entropy alloys: an overview. Mater. Sci. Technol. 31:1–8. https://doi.org/10.1179/1743284715Y.0000000018

    Article  CAS  Google Scholar 

  39. Yurchenko N, Stepanov N, Salishchev G (2016) Laves–phase formation criterion for high–entropy alloys. Mater. Sci. Technol. 11:17–22. https://doi.org/10.1080/02670836.2016.1153277

    Article  CAS  Google Scholar 

  40. Xing QW, Zhang Y (2017) Amorphous phase formation rules in high–entropy alloys. Chin. Phys. B 26:018104. https://doi.org/10.1088/1674-1056/26/1/018104

    Article  CAS  Google Scholar 

  41. Zhang Y (2019) High–entropy materials: a brief introduction. Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978-981-13-8526-1

  42. Nishizawa T, Ishida K (1983) The Co−Ni (cobalt–nickel) system. Bull. Alloy Phase Diagr. 4:390–395. https://doi.org/10.1007/BF02868090

  43. Takeuchi A, Inoue A (2001) Quantitative evaluation of critical cooling rate for metallic glasses. Mater. Sci. Eng. A 304–306:446–451. https://doi.org/10.1016/S0921-5093(00)01446-5

    Article  Google Scholar 

  44. Takeuchi A, Inoue A (2010) Mixing enthalpy of liquid phase calculated by Miedema’s scheme and approximated with sub–regular solution model for assessing forming ability of amorphous and glassy alloys. Intermetallics 18:1779–1789. https://doi.org/10.1016/j.intermet.2010.06.003

    Article  CAS  Google Scholar 

  45. Plimpton S (1995) Fast parallel algorithms for short–range molecular dynamics. J. Comput. Phys. 117:1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  46. Béland LK, Lu C, Osetskiy YN, Samolyuk GD, Caro A, Wang L, Stoller RE (2016) Features of primary damage by high energy displacement cascades in concentrated Ni–based alloys. J. Appl. Phys. 119:085901. https://doi.org/10.1063/1.4942533

    Article  CAS  Google Scholar 

  47. Mishin Y (2004) Atomistic modeling of the γ and γ′–phases of the Ni–Al system. Acta Mater. 52:1451–1467. https://doi.org/10.1016/j.actamat.2003.11.026

    Article  CAS  Google Scholar 

  48. Pun GPP, Mishin Y (2012) Embedded–atom potential for hcp and fcc cobalt. Phys. Rev. B 86:134116. https://doi.org/10.1103/PhysRevB.86.134116

    Article  CAS  Google Scholar 

  49. Li F, Zhang H, Liu X, Yu C, Lu Z (2018) Effects of cooling rate on the atomic structure of Cu64Zr36 binary metallic glass. Comput. Mater. Sci. 141:59–67. https://doi.org/10.1016/j.commatsci.2017.09.026

    Article  CAS  Google Scholar 

  50. Martyna GJ, Klein ML, Tuckerman M (1992) Nosé–Hoover chains: the canonical ensemble via continuous dynamics. J. Chem. Phys. 97:2635–2643. https://doi.org/10.1063/1.463940

  51. Durandurdu M (2012) Ab initio modeling of metallic Pd80Si20 glass. Comput. Mater. Sci. 65:44–47. https://doi.org/10.1016/j.commatsci.2012.06.040

    Article  CAS  Google Scholar 

  52. Finney JL (1970) Random packings and the structure of simple liquids I. The geometry of random close packing. Proc. R. Soc. A 319:479–493. https://doi.org/10.1098/rspa.1970.0189

    Article  CAS  Google Scholar 

  53. Li F, Liu XJ, Lu ZP (2014) Atomic structural evolution during glass formation of a Cu–Zr binary metallic glass. Comput. Mater. Sci. 85:147–153. https://doi.org/10.1016/j.commatsci.2013.12.058

    Article  CAS  Google Scholar 

  54. Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model. Simul. Mater. Sci. Eng. 18:015012. https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  55. Meraj MD, Pal S (2016) The effect of temperature on creep behaviour of porous (1 at.%) nano crystalline nickel. Trans. Indian Inst. Metals 69:277–282. https://doi.org/10.1007/s12666-015-0763-x

    Article  Google Scholar 

  56. Park JM, Na JH, Kim DH, Kim KB, Mattern N, Kuhn U, Eckert J (2010) Medium range ordering and its effect on plasticity of Fe–Mn–B–Y–Nb bulk metallic glass. Philos. Mag. 90:2619–2633. https://doi.org/10.1080/14786431003662556

    Article  CAS  Google Scholar 

  57. Mattern N (2007) Structure formation in liquid and amorphous metallic alloys. J. Non–Crys. Solids 353:1723–1731. https://doi.org/10.1016/j.jnoncrysol.2007.01.042

    Article  CAS  Google Scholar 

  58. Fujita T, Konno K, Zhang W, Kumar V, Matsuura M, Inoue A, Sakurai T, Chen MW (2009) Atomic–scale heterogeneity of a multicomponent bulk metallic glass with excellent glass forming ability. Phys. Rev. Lett. 103:075502. https://doi.org/10.1103/PhysRevLett.103.075502

    Article  CAS  PubMed  Google Scholar 

  59. Greer AL (1993) Confusion by design. Nature 366:303–304. https://doi.org/10.1038/366303a0

    Article  Google Scholar 

  60. Senkov ON, Miracle DB (2001) Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. MRS Bull. 36:2183–2198. https://doi.org/10.1016/S0025-5408(01)00715-2

    Article  CAS  Google Scholar 

  61. Busch R (2000) The thermophysical properties of bulk metallic glass–forming liquids. JOM 52:39–42. https://doi.org/10.1007/s11837-000-0160-7

    Article  CAS  Google Scholar 

  62. Jiang D, Wen D, Tian Z, Liu R (2016) Glass formation and cluster evolution in the rapidly solidified monatomic metallic liquid Ta under high pressure. Phys. A: Stat. Mech. Appl. 463:174–181. https://doi.org/10.1016/j.physa.2016.07.032

    Article  CAS  Google Scholar 

  63. Zhang H, Mo Y, Tian Z, Liu R, Zhou L, Hou Z (2017) The effect of pressure on the crystallization of rapidly supercooled zirconium melts. Phys. Chem. Chem. Phys. 19:12310–12320. https://doi.org/10.1039/C7CP00865A

    Article  CAS  PubMed  Google Scholar 

  64. Sanchez IC (1974) Towards a theory of viscosity for glass-forming liquids. J. Appl. Phys. 45:4204–4215. https://doi.org/10.1063/1.1663037

    Article  CAS  Google Scholar 

  65. Jiang JZ, Roseker W, Sikorski M, Cao QP, Xu F (2004) Pressure effect of glass transition temperature in Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk metallic glass. Appl. Phys. Lett. 84:1871. https://doi.org/10.1063/1.1675937

    Article  CAS  Google Scholar 

  66. Samwer K, Busch R, Johnson WL (1999) Change of compressibility at the glass transition and Prigogine–Defay ratio in ZrTiCuNiBe alloys. Phys. Rev. Lett. 82:580–583. https://doi.org/10.1103/PhysRevLett.82.580

    Article  CAS  Google Scholar 

  67. Jia Z, Duan X, Qin P, Zhang W, Wang W, Yang C, Sun H, Wang S, Zhang LC (2017) Disordered atomic packing structure of metallic glass: toward ultrafast hydroxyl radicals production rate and strong electron transfer ability in catalytic performance. Adv. Funct. Mater. 27:1702258. https://doi.org/10.1002/adfm.201702258

    Article  CAS  Google Scholar 

  68. Feng SD, Chan KC, Chen SH, Zhao L, Liu RP (2017) The role of configurational disorder on plastic and dynamic deformation in Cu64Zr36 metallic glasses: a molecular dynamics analysis. Sci. Rep. 7:40969. https://doi.org/10.1038/srep40969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Turnbull D (1969) Under what conditions can a glass be formed? Contemp. Phys. 10:73–488. https://doi.org/10.1080/00107516908204405

    Article  Google Scholar 

  70. Srivastava AP, Srivastava D, Sudarshan K, Sharma SK, Pujari PK, Majumdar B, Suresh KG, Dey GK (2012) Correlation of soft magnetic properties with free volume and medium range ordering in metallic glasses probed by fluctuation microscopy and positron annihilation technique. J. Magn. Magn. Mater. 324:2476–2482. https://doi.org/10.1016/j.jmmm.2012.03.014

    Article  CAS  Google Scholar 

  71. Wen J, Cheng YQ, Wang JQ, Ma E (2009) Distinguishing medium–range order in metallic glasses using fluctuation electron microscopy: a theoretical study using atomic models. J. Appl. Phys. 105:043519. https://doi.org/10.1063/1.3079514

    Article  CAS  Google Scholar 

  72. Colín JG, Valladares AA, Valladares RM, Valladare A (2015) Short–range order in ab initio computer generated amorphous and liquid Cu–Zr alloys: a new approach. Physica B: Cond. Matter. 475:140–147. https://doi.org/10.1016/j.physb.2015.07.027

    Article  CAS  Google Scholar 

  73. Wu ZW, Li MZ, Wang WH, Liu KX (2015) Hidden topological order and its correlation with glass–forming ability in metallic glasses. Nat. Commun. 6:7035. https://doi.org/10.1038/ncomms7035

    Article  CAS  Google Scholar 

  74. Miracle DB, Lord EA, Ranganathan S (2006) Candidate atomic cluster configurations in metallic glass structures. Mater. Trans. 47:1737–1742. https://doi.org/10.2320/matertrans.47.1737

    Article  CAS  Google Scholar 

  75. Sheng HW, Luo WK, Alamgir FM, Bai JM, Ma E (2006) Atomic packing and short–to–medium–range order in metallic glasses. Nature 439:419–425. https://doi.org/10.1038/nature04421

    Article  CAS  PubMed  Google Scholar 

  76. Kbirou M, Trady S, Hasnaoui A, Mazroui M (2018) Short and medium–range orders in Co3Al metallic glass. Chem. Phys. 513:58–66. https://doi.org/10.1016/j.chemphys.2018.06.018

    Article  CAS  Google Scholar 

  77. Frank FC, Kasper JS (1958) Complex alloy structures regarded as sphere packings. I. Definitions and basic principles. Acta Crystallogr. 11:184–190. https://doi.org/10.1107/S0365110X58000487

    Article  CAS  Google Scholar 

  78. Hwang J (2011) Nanometer scale atomic structure of zirconium based bulk, Ph.D. diss., Te University of Wisconsin–Madiscon. http://digital.library.wisc.edu/1793/63366

  79. Sun YL, Shen J, Valladares AA (2009) Atomic structure and diffusion in Cu60Zr40 metallic liquid and glass: molecular dynamics simulations. J. Appl. Phys. 106:073520. https://doi.org/10.1063/1.3245324

    Article  CAS  Google Scholar 

  80. Toninelli C, Wyart M, Berthier L, Biroli G, Bouchaud JP (2005) Dynamical susceptibility of glass formers: contrasting the predictions of theoretical scenarios. Phys. Rev. E 71:041505. https://doi.org/10.1103/PhysRevE.71.041505

    Article  CAS  Google Scholar 

  81. Karmakara S, Dasgupta C, Sastry S (2009) Growing length and time scales in glass–forming liquids. PNAS 106:3675–3679. https://doi.org/10.1073/pnas.0811082106

    Article  Google Scholar 

  82. Kluge M, Schober HR (2004) Diffusion and jump–length distribution in liquid and amorphous Cu33Zr67. Phys. Rev. B 70:224209. https://doi.org/10.1103/PhysRevB.70.224209

    Article  CAS  Google Scholar 

  83. Wong K, Kana HW, Mole R, Yu D, Chathotha SM (2018) The influence of short–range structures on atomic caging in glass–forming Cu–Zr–Al melts. Intermetallics 102:114–119. https://doi.org/10.1016/j.intermet.2018.09.009

    Article  CAS  Google Scholar 

  84. Mendelev MI, Kramer MJ, Ott RT, Sordelet DJ (2009) Molecular dynamics simulation of diffusion in supercooled Cu–Zr alloys. Philos. Mag. 89:109–126. https://doi.org/10.1080/14786430802570648

    Article  CAS  Google Scholar 

  85. Faupel F, Frank W, Macht MP, Mehrer H, Naundorf V, Ratzke K, Schober H, Sharma S, Teichler H (2003) Diffusion in metallic glasses and supercooled melts. Rev. Mod. Phys. 75:237–280. https://doi.org/10.1103/RevModPhys.75.237

    Article  Google Scholar 

  86. Liu XJ, Wang SD, Fan HY, Ye YF, Wang H, Wu Y, Lu ZP (2018) Static atomic–scale structural heterogeneity and its effects on glass formation and dynamics of metallic glasses. Intermetallics 101:133–143. https://doi.org/10.1016/j.intermet.2018.08.001

    Article  CAS  Google Scholar 

  87. Jaiswal A, Egami T, Zhang Y (2015) Atomic–scale dynamics of a model glass–forming metallic liquid: dynamical crossover, dynamical decoupling, and dynamical clustering. Phys. Rev. B 91:134204. https://doi.org/10.1103/PhysRevB.91.134204

    Article  CAS  Google Scholar 

  88. Jiang JZ, Gerward L, Xu YS (2002) Pressure effect on crystallization kinetics in Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk glass. Appl. Phys. Lett. 81:4347. https://doi.org/10.1063/1.1527227

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the Department of Metallurgical and Materials Engineering, National Institute of Technology Rourkela for providing the high-performance computational facilities to carry out these computational simulations.

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehanshu Pal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2146 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshmukh, A.A., Pal, S. Dynamic probing of structural evolution for Co50Ni50 metallic glass during pressurized cooling using atomistic simulation. J Mol Model 26, 208 (2020). https://doi.org/10.1007/s00894-020-04468-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04468-4

Keywords

Navigation