Skip to main content
Log in

Ferromagnetism in Gd-doped ZnO thin films mediated by defects

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Defects play an inevitable role in controlling the optical and magnetic properties of ZnO. In this study, defects were introduced in gadolinium (Gd)-doped ZnO films by depositing in pure argon atmosphere. The pristine- and Gd-doped (0.05, 0.1 and 1 at%) films were deposited on Si(111) substrate by radio frequency magnetron sputtering at a substrate temperature of 450°C under Ar pressure of 0.02 mbar. Structural, morphological, chemical, optical and magnetic properties of the deposited films were studied by X-ray diffraction and Raman spectroscopy, atomic force microscopy, X-ray photoelectron spectroscopy, photoluminescence and vibrating sample magnetometer, respectively. It is confirmed that oxygen-deficient growth condition leads to the formation of oxygen vacancy (VO+) and zinc interstitial (Zni+) defects in the films. It is shown that a critical amount of Zni+ and VO+ along with the appropriate amount of Gd3+ ions are required to induce room temperature ferromagnetism in Gd-doped ZnO thin film deposited on Si(111) substrate. A possible mechanism has been proposed based on bound magnetic polaron model to explain the observed ferromagnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Zhang L, Zhu L, Hu L, Li Y, Song H and Ye Z 2016 RSC Adv. 6 57403

    Article  CAS  Google Scholar 

  2. Tian Z M, Yuan S L, Yin S Y, Zhang S Q, Xie H Y, Miao J H et al 2008 J. Magn. Magn. Mater. 320 L5

    Article  CAS  Google Scholar 

  3. Ali N, Singh B, Khan Z A, Vijaya A R, Tarafder K and Ghosh S 2019 Sci. Rep. 9 2461

    Article  CAS  Google Scholar 

  4. Nallusamy S and Nammalvar G 2018 Mater. Res. Express 5 026418

    Article  CAS  Google Scholar 

  5. Xia C, Hu C, Chen P, Wan B, He X and Tian Y 2010 Mater. Res. Bull. 45 794

    Article  CAS  Google Scholar 

  6. Alla S K, Kollu P, Mandal R K and Prasad N K 2018 Ceram. Int. 44 7221

    Article  CAS  Google Scholar 

  7. Nachiar R A and Muthukumaran S 2019 Opt. Laser Technol. 112 458

    Article  CAS  Google Scholar 

  8. Sujatha Lekshmy S, Anitha V S and Joy K 2014 Mater. Res. Soc. Symp. Proc. 1675 113

    Article  CAS  Google Scholar 

  9. Cui X G, Tao Z K, Zhang R, Li X, Xiu X Q, Xie Z L et al 2008 Appl. Phys. Lett. 92 152116

    Article  CAS  Google Scholar 

  10. Seong H K, Kim J Y, Kim J J, Lee S C, Kim S R, Kim U et al 2007 Nano Lett. 7 3366

    Article  CAS  Google Scholar 

  11. Janotti A and Van De Walle C G 2009 Rep. Prog. Phys. 72 126501

    Article  CAS  Google Scholar 

  12. Tao Y M, Ma S Y, Chen H X, Meng J X, Hou L L, Jia Y F et al 2011 Vacuum 85 744

    Article  CAS  Google Scholar 

  13. Yoon H, Hua Wu J, Hyun Min J, Sung Lee J, Ju J S and Keun Kim Y 2012 J. Appl. Phys. 111 07B523

    Article  CAS  Google Scholar 

  14. Fifere N, Airinei A, Timpu D, Rotaru A, Sacarescu L and Ursu L 2018 J. Alloys Compd. 757 60

    Article  CAS  Google Scholar 

  15. Arora D, Asokan K, Mahajan A, Kaur H and Singh D P 2016 RSC Adv. 6 78122

    Article  CAS  Google Scholar 

  16. Quan Z, Liu X, Qi Y, Song Z, Qi S, Zhou G and Xu X 2017 Appl. Surf. Sci. 399 751

    Article  CAS  Google Scholar 

  17. Nie X, Zhang B, Wang J, Shi L, Di Z and Guo Q 2015 Mater. Lett. 161 355

    Article  CAS  Google Scholar 

  18. Herng T S, Lau S P, Wei C S, Wang L, Zhao B C, Tanemura M et al 2009 Appl. Phys. Lett. 95 13

    Google Scholar 

  19. Wang J, Hou S, Chen H and Xiang L 2014 J. Phys. Chem. C 118 19469

    Article  CAS  Google Scholar 

  20. Ogale S B 2010 Adv. Mater. 22 3125

    Article  CAS  Google Scholar 

  21. Coey J M D, Venkatesan M and Fitzgerald C B 2005 Nat. Mater. 4 173

    Article  CAS  Google Scholar 

  22. Iqbal J, Wang B, Liu X, Yu D, He B and Yu R 2009 New J. Phys. 11 063009

    Article  CAS  Google Scholar 

  23. Ahmed S A 2017 Results Phys. 7 604

    Article  Google Scholar 

  24. Li F, Liu X C, Zhou R W, Chen H M, Zhuo S Y and Shi E W 2014 J. Appl. Phys. 116 243910

    Article  CAS  Google Scholar 

  25. Pivin J C, Socol G, Mihailescu I, Berthet P, Singh F, Patel M K et al 2008 Thin Solid Films 517 916

    Article  CAS  Google Scholar 

  26. Zhang X, Wang W H, Li L Y, Cheng Y H, Luo X G, Liu H et al 2008 EPL 84 27005

    Article  CAS  Google Scholar 

  27. Bin Chen W, Liu X C, Li F, Chen H M, Zhou R W and Shi E W 2015 AIP Adv. 5 067105

    Article  CAS  Google Scholar 

  28. Ali N, Vijaya A R, Khan Z A, Tarafder K, Kumar A, Wadhwa M K et al 2019 Sci. Rep. 9 20039

    Article  CAS  Google Scholar 

  29. Shvarkov S, Ludwig A, Wieck A D, Cordier Y, Ney A, Hardtdegen H et al 2014 Phys. Status Solidi Basic Res. 251 1673

    Article  CAS  Google Scholar 

  30. Obeid M M, Jappor H R, Al-Marzoki K, Al-Hydary I A, Edrees S J and Shukur M M 2019 RSC Adv. 9 33207

    Article  CAS  Google Scholar 

  31. Kaur P, Kumar S, Chen C L, Hsu Y Y, Chan T S, Dong C L et al 2016 Appl. Phys. A 122 161

    Article  CAS  Google Scholar 

  32. Potzger K, Zhou S, Eichhorn F, Helm M, Skorupa W, Mücklich A et al 2006 J. Appl. Phys. 99 063906

    Article  CAS  Google Scholar 

  33. Venkatesh S, Franklin J B, Ryan M P, Lee J S, Ohldag H, McLachlan M A et al 2015 J. Appl. Phys. 117 013913

    Article  CAS  Google Scholar 

  34. Janotti A and Van De Walle C G 2007 Phys. Rev. B-Condens. Matter Mater. Phys. 76 1

    Article  CAS  Google Scholar 

  35. Xin M 2018 J. Theor. Appl. Phys. 12 177

    Article  Google Scholar 

  36. Zhou H, Chen L, Malik V, Knies C, Hofmann D M, Bhatti K P et al 2007 Phys. Status Solidi Appl. Mater. Sci. 204 112

    Article  CAS  Google Scholar 

  37. Wang X, Li Q, Liu Z, Zhang J, Liu Z and Wang R 2004 Appl. Phys. Lett. 84 4941

    Article  CAS  Google Scholar 

  38. Zhang M, Averseng F, Haque F, Francia, Borghetti P, Krafft J M et al 2019 Nanoscale 11 5102

    Article  CAS  Google Scholar 

  39. Lin C C, Young S L, Kung C Y, Horng L, Chen H Z, Kao M C et al 2013 Vacuum 87 178

    Article  CAS  Google Scholar 

  40. Kumar P, Sharma V, Sarwa A, Kumar A, Surbhi, Goyal R et al 2016 RSC Adv. 6 89242

  41. Du L and Maroudas D 2017 Appl. Phys. Lett. 110 103103

    Article  CAS  Google Scholar 

  42. Vijayaprasath G, Murugan R, Hayakawa Y and Ravi G 2016 Lumin. J. 178 375

    Article  CAS  Google Scholar 

  43. Mithal D and Kundu T 2017 Solid State Sci. 68 47

    Article  CAS  Google Scholar 

  44. Hsieh P T, Chen Y C, Kao K S and Wang C M 2008 Appl. Phys. A Mater. Sci. Process. 90 317

    Article  CAS  Google Scholar 

  45. Bandopadhyay K and Mitra J 2015 RSC Adv. 5 23540

    Article  CAS  Google Scholar 

  46. Wu X, Xu Z, Liu B, Sun T, Zhao W, Liu S et al 2014 Appl. Phys. A Mater. Sci. Process. 114 847

    Article  CAS  Google Scholar 

  47. Roqan I S, Venkatesh S, Zhang Z, Hussain S, Bantounas I, Franklin J B et al 2015 J. Appl. Phys. 117 073904

    Article  CAS  Google Scholar 

  48. Ma X 2012 Thin Solid Films 520 5752

    Article  CAS  Google Scholar 

  49. Aravindh S A, Schwingenschloegl U and Roqan I S 2014 J. Appl. Phys. 116 1

    Article  CAS  Google Scholar 

  50. Vijayaprasath G, Murugan R, Mahalingam T, Hayakawa Y and Ravi G 2015 Ceram. Int. 41 10607

    Article  CAS  Google Scholar 

  51. Roqan I S, Aravindh S A and Venkatesh S 2016 in M Khan (ed) Magnetic materials (IntechOpen) 251 https://www.intechopen.com/chapters/51165

  52. Li J, Li Y, Li S, Zhu M, Zhang J, Li Y et al 2020 Ceram. Int. 46 18639

    Article  CAS  Google Scholar 

  53. Olive-Méndez S F, Santillán-Rodríguez C R, González-Valenzuela R A, Espinosa-Magaña F and Matutes-Aquino J A 2014 Nanoscale Res. Lett. 9 1

    Article  CAS  Google Scholar 

  54. Gandhi V, Ganesan R, Abdulrahman Syedahamed H H and Thaiyan M 2014 J. Phys. Chem. C 118 9717

    Article  CAS  Google Scholar 

  55. Kayaci F, Vempati S, Donmez I, Biyikli N and Uyar T 2014 Nanoscale 6 10224

    Article  CAS  Google Scholar 

  56. Ghose S, Rakshit T, Ranganathan R and Jana D 2015 RSC Adv. 5 99766

    Article  CAS  Google Scholar 

  57. Zeng H, Duan G, Li Y, Yang S, Xu X and Cai W 2010 Adv. Funct. Mater. 20 561

    Article  CAS  Google Scholar 

  58. Nikiforov V N, Kuznetsov V D, Ruchkin A V and Salyanov V I 2005 Proc. Third Moscow Int. Symp. Magn. 249

  59. McKeehan L W 1950 Phys. Rev. 79 745

    Article  Google Scholar 

  60. Ali N, Singh B and Ghosh S 2019 J. Magn. Magn. Mater. 492 1

    Article  CAS  Google Scholar 

  61. Dakhel A A and El-Hilo M 2010 J. Appl. Phys. 107 123905

    Article  CAS  Google Scholar 

  62. Pal B and Giri P K 2011 J. Nanosci. Nanotechnol. 11 9167

    Article  CAS  Google Scholar 

  63. Duan L B, Rao G H, Yu J, Wang Y C, Chu W G and Zhang L N 2007 J. Appl. Phys. 102 103907

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AS acknowledges MHRD, Government of India, for providing Junior Research Fellowship (JRF) Grant to undertake this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Gopalakrishnan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukumaran, A., Sivanantham, N., Vinoth, E. et al. Ferromagnetism in Gd-doped ZnO thin films mediated by defects. Bull Mater Sci 44, 259 (2021). https://doi.org/10.1007/s12034-021-02550-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02550-y

Keywords

Navigation