Skip to main content
Log in

Thermal, optical and electrical susceptibility studies of pure and calcium-doped nickel cadmium oxalate crystals

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Novel crystals of pure nickel cadmium oxalate (NCO) and calcium-doped nickel cadmium oxalate (CNCO) were grown by single diffusion method in silica hydrogel by optimizing the growth parameters. The grown crystals were characterized using field-emission scanning electron microscope, energy-dispersive X-ray (EDX) analysis, Fourier transform infrared spectroscope, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and UV–visible spectrometer. Ca2+ ions were used to occupy the vacancies of intrinsically available Ni2+ and Cd2+ ions in the lattice of NCO crystals. This causes change in morphology of NCO crystals and resulted in the growth of CNCO. Crystallinity and lattice parameters of the grown crystals are analysed by XRD technique. Thermal studies show the thermal stability of grown crystals. Number of water molecules present and molecular weight of the crystals were also determined using EDX and TGA studies. Electrical susceptibility, real and imaginary parts of the dielectric constant, energy gap of the as-grown crystals were calculated using the UV–visible spectroscopy. The results of doped crystal were compared with undoped NCO crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Norlund Christensen A and Hazell R G 1995 J. Phys. Chem. Solids 56 1359

    Article  Google Scholar 

  2. Bacce E D and Pires A M 2001 Int. J. Inorg. Mater. 3 443

    Article  CAS  Google Scholar 

  3. Laxman Singh, Rai U S and Singh N B 2014 Prog. Cryst. Growth Ch. 60 15

    Article  Google Scholar 

  4. Rohith P S and Jagannatha N 2019 Mater. Today Proc. 8 85

    Article  CAS  Google Scholar 

  5. Yadav H, Sinha N and Kumar B 2015 Mater. Res. Bull. 64 194

    Article  CAS  Google Scholar 

  6. Vimal G, Mani K P, Gijo Jose and Biju P R 2014 J. Cryst. Growth 404 20

    Article  CAS  Google Scholar 

  7. Shedam M R 1998 Mater. Chem. Phys. 52 263

    Article  CAS  Google Scholar 

  8. Jagannatha N and Mohan Rao P 1993 Bull. Mater. Sci. 16 365

    Article  CAS  Google Scholar 

  9. Pradeepkumar K V and Jagannatha N 2021 J. Cryst. Growth 563 126107

    Article  CAS  Google Scholar 

  10. Rohith P S and Jagannatha N 2018 J. Appl. Chem. 4 1033

    Google Scholar 

  11. Arora S K, Patel V, Chudasama B and Amin B 2005 J. Cryst. Growth 275 657

    Article  CAS  Google Scholar 

  12. Patel A R and Venkateswara Rao A 1982 Bull. Mater. Sci. 4 527

    Article  CAS  Google Scholar 

  13. Pradeepkumar K V and Jagannatha N 2019 J. Appl. Chem. 8 1893

    CAS  Google Scholar 

  14. Rohith P S and Jagannatha N 2019 J. Appl. Chem. 4 1838

    Google Scholar 

  15. Rohith P S and Jagannatha N 2020 J. Mater. Environ. Sci. 11 788

    CAS  Google Scholar 

  16. Rohith P S and Jagannatha N 2020 Int. J. Chemtech. Res. 13 91

    Article  CAS  Google Scholar 

  17. Dalal P V and Saraf K B 2012 J. Cryst. Process Technol. 2 156

    Article  CAS  Google Scholar 

  18. Shedam M R 1998 Mater. Chem. Phys. 52 303

    Article  Google Scholar 

  19. Selasteen F D 2016 J. Cryst. Proc. Technol. 6 11

    CAS  Google Scholar 

  20. Alfred Cecil Raj S 2014 Int. J. Ethics Eng. Mgmnt. Edn. 1 21

    Google Scholar 

  21. Bangera K V and Mohan Rao P 1994 Indian J. Pure Appl. Phys. 32 871

    CAS  Google Scholar 

  22. Dalal P V 2013 Indian J. Mater. Sci. 7 729

    Google Scholar 

  23. Raj A M E 2008 Solid State Sci. 10 557

    Article  Google Scholar 

  24. Arora S K and Abraham T 1977 J. Cryst. Growth 52 851

    Article  Google Scholar 

  25. Selasteen F D 2016 Inter. J. Phys. 2 29

    Google Scholar 

  26. Rohith P S and Jagannatha N 2019 Int. J. Phys. Appl. Sci. 6 01

    Google Scholar 

  27. Dollimore D and Heal G R 1985 Thermochim. Acta 92 543

    Article  CAS  Google Scholar 

  28. Tauc J, Grigorovici R and Vancu A 1966 Phys. Status Solidi B 15 627

    Article  CAS  Google Scholar 

  29. Moss T S 1985 J. Phys. Status Solidi B 131 415

    Article  CAS  Google Scholar 

  30. Ramachandra Raja C and Gokila G 2009 Spectrochim. Acta A 72 753

    Article  Google Scholar 

  31. Reddy R R and Anjaneyulu S 1992 Phys. Status Solidi 174 91

    Article  Google Scholar 

  32. Vasudevan P, Shankar S and Jayaraman D 2013 Bull. Korean Chem. Soc. 34 128

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the principal, FMKMC College, Madikeri; the scientific officer, DST-PURSE Laboratory, Mangalore University; Chairman, Department of Studies in Physics, Mangalore University; Director, USIC Mangalore University and the Director, STIC Cochin, for providing facilities for the characterization and technical support to carry out the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Jagannatha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohith, P.S., Jagannatha, N. & Pradeep Kumar, K.V. Thermal, optical and electrical susceptibility studies of pure and calcium-doped nickel cadmium oxalate crystals. Bull Mater Sci 44, 185 (2021). https://doi.org/10.1007/s12034-021-02486-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02486-3

Keywords

Navigation