Skip to main content
Log in

Optical and dielectric properties of metal halide perovskites 2D

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The two-dimensional (2D) metal halide hybrid (C2H5NH3)2MnCl4 has been grown by slow evaporation technique at room temperature. The phase-purity and morphology were confirmed using powder X-ray diffraction, scanning electron microscope and high-resolution transmission electron microscopy studies. Optical properties like reflectance and bandgap were determined from UV–visible spectrum. The dielectric properties of the studied compound have been investigated using impedance spectroscopy as a function of frequency for different temperatures from 1 Hz to 1 MHz between 353 and 453 K. The real and imaginary components Z′ and Z″ of impedance are fitted using an equivalent circuit model, consisted of a series combination of parallel resistance-constant phase elements of grain (Rg║CPEg), resistance-capacitance of grain boundary (Rgb║Cgb) and resistance-capacitance of electrode (Rel║Cel), which reveal the existence of distribution of relaxation times and thermally activated non-Debye-like relaxation. The frequency-dependent AC conductivity is well described by Jonscher’s universal power law, which follows the Arrhenuis relation. The above results indicate the semiconductor behaviour with wide bandgap energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Song J, Fang T, Li J, Xu L, Zhang F, Han B et al 2018 Adv. Mater. 30 1805409

    Article  Google Scholar 

  2. Buizza L R V, Crothers T W, Wang Z, Patel J B, Milot R L, Snaith H J et al 2019 Adv. Funct. Mater. 29 1902656

    Article  Google Scholar 

  3. Kamminga M E, Gélvez-Rueda M C, Maheshwari S, van Droffelaar I S, Baas J, Blake G R et al 2019 J. Solid State Chem. 270 593

  4. Chiarella F, Ferro P, Licci F, Barra M, Biasiucci M, Cassinese A et al 2007 Appl. Phys. A 86 89

    Article  CAS  Google Scholar 

  5. Liu K, Jiang Y, Jiang Y, Guo Y, Liu Y and Nakamura E 2019 J. Am. Chem. Soc. 141 1406

    Article  CAS  Google Scholar 

  6. Schulke U and Kayser R 1985 Z. Anorg. Allg. Chem. 531 167

    Article  Google Scholar 

  7. Leng K, Fu W, Liu Y, Chhowalla M and Loh K P 2020 Nat. Mater. Rev. https://doi.org/10.1038/s41578-020-0185-1

  8. Vassilakopoulou A and Koutselas I 2020 in Revolution of perovskite R S N Arul and V Nithya (eds) (Singapore: Springer) p 289

  9. Ma S, Cai M, Cheng T, Ding X, Shi X, Alsaedi A et al 2018 Sci. China Mater. 61 1257

    Article  CAS  Google Scholar 

  10. Hu J, Yan L and You W 2018 Adv. Mater. 30 1802041

    Article  Google Scholar 

  11. Sun J, Wu J, Tong X, Lin F, Wang Y and Wang Z M 2018 Adv. Sci. 5 1700780

    Article  Google Scholar 

  12. Deng W, Liang X, Kubiak P S and Cameron P J 2018 Adv. Energy Mater. 8 1701544

    Article  Google Scholar 

  13. Dou L, Yang Y M, You J, Hong Z, Chang W H, Li G et al 2019 Nat. Commun. 10 1866

    Article  Google Scholar 

  14. Liu X, Chanana A, Huynh U, Xue F, Haney P, Blair S et al 2020 Nat. Commun. 11 1

    CAS  Google Scholar 

  15. Kim H P, Vasilopoulou M, Ullah H, Bibi S, Gavim A E X, Macedo A G et al 2020 Nanoscale 12 7641

    Article  CAS  Google Scholar 

  16. Yangui A, Roccanova R, McWhorter T M, Wu Y, Du M H and Saparov B 2019 Chem. Mater. 31 2983

    Article  CAS  Google Scholar 

  17. Mir S H, Nagahara L A, Thundat T, Mokarian-Tabari P, Furukawa H and Khosla A 2018 J. Electrochem. Soc. 165 B3137

    Article  CAS  Google Scholar 

  18. Zhou C, Lin H, Lee S, Chaaban M and Ma B 2008 Mater. Res. Lett. 6 552

    Article  Google Scholar 

  19. Ma Z Q, Shao Y, Wong P K, Shi X and Pann H 2018 J. Phys. Chem. C 122 5844

    Article  CAS  Google Scholar 

  20. Grancini G, Roldán-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D et al 2017 Nat. Commun. 8 15684

  21. Mitzi D B 1999 Prog. Inorg. Chem. 48 1

    CAS  Google Scholar 

  22. El Khechoubi M, Bendani A, Chanh N B, Courseille C, Duplessix R and Couzi M 1994 J. Phys. Chem. Solids 55 1277

    Article  CAS  Google Scholar 

  23. Kassou S, Kaiba A, Guionneau P and Belaaraj A 2016 J. Struct. Chem. 57 737

    Article  CAS  Google Scholar 

  24. Ettakni M, Azza J, Haiki F, Kaiba A and El Khechoubi M 2017 Energy Procedia 139 766

    Article  CAS  Google Scholar 

  25. Knutson J L, Martin J D and Mitzi D B 2005 Inorg. Chem. 44 4699

    Article  CAS  Google Scholar 

  26. Saparov B and Mitzi D B 2016 Chem. Rev. 116 4558

    Article  CAS  Google Scholar 

  27. Lv X H, Liao W Q, Li P F, Wang Z X, Mao C Y and Zhang Y 2016 J. Mater. Chem. C 4 1881

    Article  CAS  Google Scholar 

  28. Saleh M A, Nugroho A A, Dewi K K, Supandi A R, Onggo D, Kuhn H et al 2019 Key Eng. Mater. 811 179

    Article  Google Scholar 

  29. Sen A, Swain D, Row T N G and Sundaresan A 2019 J. Mater. Chem. C 7 4838

    Article  CAS  Google Scholar 

  30. Nie Z, Yin J, Zhou H, Chai N, Chen B, Zhang Y et al 2016 ACS Appl. Mater. Interfaces 8 28187

    Article  CAS  Google Scholar 

  31. Gillon A L, Lewis G R, Orpen A G, Rotter S, Starbuck J, Wang X M et al 2000 J. Chem. Soc. Dalton Trans. 21 3897

    Article  Google Scholar 

  32. Barreda-Argüeso J A, Nataf L, Rodríguez-Lazcano Y, Aguado F, González J, Valiente R et al 2014 Inorg. Chem. 53 10708

    Article  Google Scholar 

  33. Depmeier W 1976 Acta Cryst. B 32 303

    Article  Google Scholar 

  34. Guo L, Sun Y, Mei A, Dai Y and Liu H 2008 J. Wuhan Univ. Technol. Mater. Sci. Edit. 23 490

  35. Kassou S, Belaaraj A, Guionneau P and Shaltaf R 2019 Adv. Compos. Hybrid Mater. 2 373

    Article  CAS  Google Scholar 

  36. Okutan M, Basaran E, Bakan H I and Yakuphanoglu F 2005 Physica B: Condens. Matter 364 300

    Article  CAS  Google Scholar 

  37. Džimbeg-Malčić V, Barbarić-Mikočević Ž and Itrić K 2011 Tech. Gazette 18 117

    Google Scholar 

  38. Mehra A and Venkateswarlu P 1966 J. Chem. Phys. 45 3381

    Article  CAS  Google Scholar 

  39. Mehra A 1968 Phys. Status Solidi B 29 847

    Article  CAS  Google Scholar 

  40. Rao J L and Purandar K 1981 Solid State Commun. 37 983

    Article  CAS  Google Scholar 

  41. Raju C L, Gopal N O, Narasimhulu K V, Rao J L and Reddy B V 2005 Spectrochim. Acta A 61 2181

    Article  Google Scholar 

  42. Turik A V, Bogatin A S and Andreev E V 2011 Phys. Solid State 53 2421

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Ettakni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ettakni, M., Kassou, S., Ghyati, S. et al. Optical and dielectric properties of metal halide perovskites 2D. Bull Mater Sci 44, 113 (2021). https://doi.org/10.1007/s12034-021-02418-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02418-1

Keywords

Navigation