Skip to main content
Log in

Ab-initio investigations on dynamical and lattice thermal behaviours of ThC

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the vibrational and lattice thermal behaviours of ThC are investigated through the density functional theory. Thermal characteristics of ThC are studied under the novel models based on the Debye–Grϋneisen and full quasi-harmonic approximation. The Gibbs free energy, thermal Grϋneisen ratio, adiabatic bulk moduli, vibrational contributions of Helmholtz free energy, internal energy and entropy of ThC are studied for the first time. The structural properties including lattice constant (a0), bulk modulus (B0) and the first derivative of the bulk modulus (\(B^{\prime}_0\)) are calculated and compared with other theoretical and experimental works that revealed a good agreement. Phonon band structure was calculated using density functional perturbation theory along the several high symmetry directions in the first Brillouin zone. The absence of imaginary phonon frequencies in the whole Brillouin zone is characteristic of the dynamical stability of the crystalline structure. Thermodynamic computations show that the vibrational Helmholtz free energy, Gibbs free energy and adiabatic bulk modulus decreased with increase in the temperature at a given pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Abram T and Ion S 2008 Energy Policy 36 4323

    Article  Google Scholar 

  2. Shein I, Shein K and Ivanovskii A 2006 J. Nucl. Mater. 353 19

    Article  CAS  Google Scholar 

  3. Shein I and Ivanovskii A 2008 J. Struct. Chem. 49 348

    Article  CAS  Google Scholar 

  4. Liu J, Dai Z, Yang X, Zhao Y and Meng S 2018 J. Nucl. Mater. 511 11

    Article  CAS  Google Scholar 

  5. Sokolov F, Fukuda K and Nawada H 2005 IAEA TECDOC 1450

  6. Herring J S, MacDonald P E, Weaver K D and Kullberg C 2001 Nucl. Eng. Des. 203 65

    Article  CAS  Google Scholar 

  7. Wang F-H, Li Q, Huang D-H, Cao Q-L, Yang J-S and Gao Z-H 2013 Physica B 423 77

    Article  CAS  Google Scholar 

  8. Atta-Fynn R and Ray A K 2007 Phys. Rev. B: Condens. Matter. 76 115101

    Article  Google Scholar 

  9. Shields A E, Santos-Carballal D and de Leeuw N H 2016 J. Nucl. Mater. 473 99

    Article  CAS  Google Scholar 

  10. Ioffe B and Kochurov B 2012 Phys. At. Nucl. 75 160

    Article  CAS  Google Scholar 

  11. Lu Y, Li D-F, Wang B-T, Li R-W and Zhang P 2011 J. Nucl. Mater. 408 136

    Article  CAS  Google Scholar 

  12. Lim I S and Scuseria G E 2008 Chem. Phys. Lett. 460 137

    Article  CAS  Google Scholar 

  13. Shein I, Shein K and Ivanovskii A 2007 Tech. Phys. Lett. 33 128

    Article  CAS  Google Scholar 

  14. Kleykamp H, Fischer D, Fluck E, Gmelin L, Meyer R J and Pietsch E 1997 Gmelin handbook of inorganic and organometallic chemistry: Uranium: Syst.-Nr. 55. Alloys of uranium with transition metals of group VIII (Verlag Chemie)

  15. Benz R, Naoumidis A and Brown D 2013 Th Thorium: Supplement Volume C 3 Compounds with Nitrogen (Springer, New York)

  16. Gerward L, Staun Olsen J, Benedict U, Itié J-P and Spirlet J 1986 J. Appl. Crystallogr. 19 308

    Article  CAS  Google Scholar 

  17. Wedgwood F 1974 J. Phys. C Solid State Phys. 7 3203

    Article  CAS  Google Scholar 

  18. Harness J, Matthews J and Morton N 1964 Br. J. Appl. Phys. 15 963

    Article  CAS  Google Scholar 

  19. Danan J 1975 J. Nucl. Mater. 57 280

    Article  CAS  Google Scholar 

  20. Street R and Waters T 1962 The thermal expansion of ThC and ThN United Kingdom Atomic Energy Authority. Research Group, Atomic Energy

    Google Scholar 

  21. Benedict U 1987 J. Less Common Metals 128 7

    Article  CAS  Google Scholar 

  22. Gerward L, Staun Olsen J, Benedict U and Luo H 1990 Compression of ThC to 50 GPa Copenhagen Univ. (Denmark), HC Oersted Inst

  23. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C et al 2009 J. Phys.: Condens. Matter. 21 395502

    Google Scholar 

  24. Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    Article  CAS  Google Scholar 

  25. Monkhorst H J and Pack J D 1976 Phys. Rev. B: Condens. Matter. 13 5188

    Article  Google Scholar 

  26. Kulik H J, Cococcioni M, Scherlis D A and Marzari N 2006 Phys. Rev. Lett. 97 103001

    Article  Google Scholar 

  27. Di Ventra M and Pantelides S T 2000 Phys. Rev. B: Condens. Matter. 61 16207

    Article  Google Scholar 

  28. Ma D, Grabowski B, Körmann F, Neugebauer J and Raabe D 2015 Acta Mater. 100 90

    Article  CAS  Google Scholar 

  29. Otero-de-la-Roza A, Abbasi-Pérez D and Luaña V 2011 Comput. Phys. Commun. 182 2232

    Article  CAS  Google Scholar 

  30. Fu Z-F, Ma J-L, Wei Q, Liu P, Zhou J-P, Li X-C et al 2018 Chin. J. Phys. 56 423

    Article  CAS  Google Scholar 

  31. Bendaif S, Boumaza A, Nemiri O, Boubendira K, Meradji H, Ghemid S et al 2015 Bull. Mater. Sci. 38 365

    Article  CAS  Google Scholar 

  32. Razzazi V and Alaei S 2017 Chin. Phys. B 26 116501

    Article  Google Scholar 

  33. Bouayed M, Yakoubi A, Ahmed R, Khachai H, Khenata R, Naqib S et al 2020 Bull. Mater. Sci. 43

  34. Baroni S, De Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515

    Article  CAS  Google Scholar 

  35. Birch F 1978 J. Geophys. Res. B: Solid Earth 83 1257

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Mahdavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahafi, M.H., Mahdavi, M. Ab-initio investigations on dynamical and lattice thermal behaviours of ThC. Bull Mater Sci 44, 98 (2021). https://doi.org/10.1007/s12034-021-02371-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02371-z

Keywords

Navigation