Skip to main content
Log in

Ab initio investigations on lattice dynamics and thermal characteristics of ThO2 using Debye–Einstein model

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the lattice dynamics and thermal characteristics of thorium dioxide are calculated using the first-principle calculations based on the density functional theory (DFT). The Gibbs free energy, isothermal bulk moduli, Debye temperature, thermal Grüneisen parameter as well as vibrational contributions of Helmholtz free energy, internal energy and entropy of thorium dioxide are studied for the first time under high temperatures and pressures. Thermal properties are compared using generalized gradient approximation (GGA) and local density approximation (LDA) under a novel model based on the quasi-harmonic Debye–Einstein method. The results of the simulation reveal that the lattice constant calculated by LDA is less than the one calculated by GGA, while the Gibbs free energy, Debye temperature, adiabatic and isothermal bulk modulus obtained from LDA are greater than ones obtained from GGA. The volumetric thermal expansion coefficient and vibrational contribution of entropy obtained from GGA and LDA increase with rise in temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Dorado B, Amadon B, Freyss M and Bertolus M 2009 Phys. Rev. B: Condens. Matter 79 235125

    Article  Google Scholar 

  2. Herring J S, MacDonald P E, Weaver K D and Kullberg C 2001 Nucl. Eng. Des. 203 65

    Article  CAS  Google Scholar 

  3. Park J, Farfán E B, Mitchell K, Resnick A, Enriquez C and Yee T 2018 J. Nucl. Mater. 504 198

    Article  CAS  Google Scholar 

  4. Scott S M, Yao T, Lu F, Xin G, Zhu W and Lian J 2017 J. Nucl. Mater. 485 207

    Article  CAS  Google Scholar 

  5. Todosow M, Galperin A, Herring S, Kazimi M, Downar T and Morozov A 2005 Nucl. Technol. 151 168

    Article  CAS  Google Scholar 

  6. Cozzo C, Staicu D, Somers J, Fernandez A and Konings R 2011 J. Nucl. Mater. 416 135

    Article  CAS  Google Scholar 

  7. Young R A 1979 J. Nucl. Mater. 87 283

    Article  CAS  Google Scholar 

  8. Olander D 2009 J. Nucl. Mater. 389 1

    Article  CAS  Google Scholar 

  9. Di Marcello V, Rondinella V, Schubert A, van de Laar J and Van Uffelen P 2014 Prog. Nucl. Energy 72 83

    Article  Google Scholar 

  10. Carbajo J J, Yoder G L, Popov S G and Ivanov V K 2001 J. Nucl. Mater. 299 181

    Article  CAS  Google Scholar 

  11. Fink J 2000 J. Nucl. Mater. 279 1

    Article  CAS  Google Scholar 

  12. Abram T and Ion S 2008 Energy Policy 36 4323

    Article  Google Scholar 

  13. Atta-Fynn R and Ray A K 2007 Phys. Rev. B: Condens. Matter 76 115101

    Article  Google Scholar 

  14. Lim I S and Scuseria G E 2008 Chem. Phys. Lett. 460 137

    Article  CAS  Google Scholar 

  15. Park J, Farfán E B and Enriquez C 2018 Nucl. Eng. Technol. 50 731

    Article  CAS  Google Scholar 

  16. Pegg J T, Aparicio-Angles X, Storr M and de Leeuw N H 2017 J. Nucl. Mater. 492 269

    Article  CAS  Google Scholar 

  17. Shields A E, Santos-Carballal D and de Leeuw N H 2016 J. Nucl. Mater. 473 99

    Article  CAS  Google Scholar 

  18. Serizawa H, Arai Y and Suzuki Y 2000 J. Nucl. Mater. 280 99

    Article  CAS  Google Scholar 

  19. Willis B 1963 Proc. R Soc. London A Math. Phys. Sci. 274 134

  20. Olsen J S, Gerward L, Kanchana V and Vaitheeswaran G 2004 J. Alloys Compd. 381 37

    Article  CAS  Google Scholar 

  21. Dancausse J-P, Gering E, Heathman S and Benedict U 1990 High Pressure Res. 2 381

    Article  Google Scholar 

  22. Li S, Ahuja R and Johansson B 2002 High Pressure Res. 22 471

    Article  Google Scholar 

  23. Yamashita T, Nitani N, Tsuji T and Inagaki H 1997 J. Nucl. Mater. 245 72

    Article  CAS  Google Scholar 

  24. Belle J and Berman R 1984 Thorium dioxide: properties and nuclear applications, USDOE Assistant Secretary for Nuclear Energy, Washington, DC

    Book  Google Scholar 

  25. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C et al 2009 J. Phys.: Condens. Matter 21 395502

    Google Scholar 

  26. Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    Article  CAS  Google Scholar 

  27. Perdew J P and Zunger A 1981 Phys. Rev. B: Condens. Matter 23 5048

    Article  CAS  Google Scholar 

  28. Pack J D and Monkhorst H J 1977 Phys. Rev. B: Condens. Matter 16 1748

    Article  Google Scholar 

  29. Kulik H J, Cococcioni M, Scherlis D A and Marzari N 2006 Phys. Rev. Lett. 97 103001

    Article  Google Scholar 

  30. Schlegel H B 1982 J. Comput. Chem. 3 214

    Article  CAS  Google Scholar 

  31. Di Ventra M and Pantelides S T 2000 Phys. Rev. B: Condens. Matter 61 16207

    Article  Google Scholar 

  32. Baroni S, De Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515

    Article  CAS  Google Scholar 

  33. Baroni S, Giannozzi P and Isaev E 2010 Rev. Mineral. Geochem. 71 39

    Article  CAS  Google Scholar 

  34. Otero-de-la-Roza A, Abbasi-Pérez D and Luaña V 2011 Comput. Phys. Commun. 182 2232

    Article  CAS  Google Scholar 

  35. Bendaif S, Boumaza A, Nemiri O, Boubendira K, Meradji H, Ghemid S et al 2015 Bull. Mater. Sci. 38 365

    Article  CAS  Google Scholar 

  36. Bouayed M, Yakoubi A, Ahmed R, Khachai H, Khenata R, Naqib S et al 2020 Bull. Mater. Sci. 43 1

  37. Birch F 1978 J. Geophys. Res. Solid Earth 83 1257

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Mahdavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahafi, M.H., Mahdavi, M. Ab initio investigations on lattice dynamics and thermal characteristics of ThO2 using Debye–Einstein model. Bull Mater Sci 44, 96 (2021). https://doi.org/10.1007/s12034-021-02370-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02370-0

Keywords

Navigation