Skip to main content

Advertisement

Log in

Nitrogen-doped graphene-like carbon from bio-waste as efficient low-cost electrocatalyst for fuel cell application

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The development of metal-free carbon-based catalysts for alkaline fuel cells has been the subject of current interest, because of the low cost and improving fuel cell efficiency. Particularly, nitrogen-doped carbon shows prominent results. Here, we show an oxygen reduction reaction (ORR) activity of nitrogen-doped graphene-like carbon materials (N-GLC) prepared by heating bagasse-derived carbon and melamine in a 1:15 ratio. The N-GLC catalyst displays excellent electro-catalytic activity towards the ORR with an onset potential of 0.92 V vs. reversible hydrogen electrode (RHE) in alkaline media (0.1 M KOH). Moreover, the half-wave (E1/2) potential 0.83 V is almost the same compared to Pt-C (40 wt%) catalyst and the diffusion limiting current of 4 mA cm–2. The rotating ring disc experiment showed a four-electron pathway (n = 3.65) with the moderate peroxide (\({{\rm HO}}^{-}_{2}\)) yield. Due to its promising ORR activity and long-term electrochemical stability, N-GLC catalyst is used in alkaline anion exchange membrane fuel cell (AEMFC) as a single cell, about 6 mW cm–2 peak power density was achieved at the load current density of ~20 mA cm–2. So the N-GLC can be a cheap alternative ORR catalyst for AEMFC applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Takanabe K 2017 ACS Catal. 7 8006

    Article  CAS  Google Scholar 

  2. Strasser P 2016 Acc. Chem. Res. 49 2658

    Article  CAS  Google Scholar 

  3. Yadegari H, Norouzi Banis M, Lushington A, Sun Q, Li R, Sham T K et al 2017 Energy Environ. Sci. 10 286

    Article  CAS  Google Scholar 

  4. Dresp S, Luo F, Schmack R, Kühl S and Gliech M 2016 Energy Environ. Sci. 9 2020

    Article  CAS  Google Scholar 

  5. Wang Z L, Xu D, Xu J J and Zhang X B 2014 Chem. Soc. Rev. 43 774

    Google Scholar 

  6. Angamuthu G, Bosu D, Ramesha K and Rangarajan V 2019 J. Electroanal. Chem. 843 37

    Article  CAS  Google Scholar 

  7. Masthanaiah P, Babu D B, Roy M L and Ramesha K 2019 J. Power Sources 436 226850

    Article  Google Scholar 

  8. Bosubabu D, Sivaraj J, Sampathkumar R and Ramesha K 2019 ACS Appl. Energy Mater. 2 4118

    Article  CAS  Google Scholar 

  9. Bosubabu D, Ette P M, Nanda Kumar A K, Arulraj A and Ramesha K 2020 ACS Appl. Energy Mater. 3 8716

    Article  CAS  Google Scholar 

  10. Bosu D, Ramesha R N, Masthanaiah P, Kaitheri A, Kumar N, Arulraj A et al 2019 J. Power Sources 436 226870

    Article  Google Scholar 

  11. Ramesha R N, Bosu D, Masthanaiah P and Ramesha K 2020 ChemElectroChem 7 328

    Article  Google Scholar 

  12. Srinu A, Peera S G, Parthiban V, Bhuvaneshwari B and Sahu A K 2018 Chem. Select. 3 690

    CAS  Google Scholar 

  13. Ramaswamy N and Mukerjee S 2012 Adv. Phys. Chem. 2012 1

    Article  Google Scholar 

  14. Spendelow J S and Wieckowski A 2007 Phys. Chem. Chem. Phys. 9 2654

    Article  CAS  Google Scholar 

  15. Ge X, Sumboja A, Wuu D, An T, Li B, Thomas Goh F W et al 2015 ACS Catal. 5 4643

    Article  CAS  Google Scholar 

  16. Mahata A, Nair A S and Pathak B 2019 Catal. Sci. Technol. 9 4835

    Article  CAS  Google Scholar 

  17. Zhao X, Yin M, Ma L, Liang L, Liu C, Liao J et al 2011 Energy Environ. Sci. 4 2736

    Article  CAS  Google Scholar 

  18. Song W, Chen Z, Yang C, Yang Z, Tai J, Nan Y et al 2015 J. Mater. Chem. A 3 1049

    Article  CAS  Google Scholar 

  19. Li H, Chen C, Yan D, Wang Y, Chen R, Zou Y et al 2019 J. Mater. Chem. A 7 23432

    Article  CAS  Google Scholar 

  20. Xue Y, Sun S, Wang Q, Dong Z and Liu Z 2018 J. Mater. Chem. A 6 10596

    Google Scholar 

  21. Peera S G, Lee T G and Sahu A K 2019 Sustain. Energy Fuels 3 1866

    Article  CAS  Google Scholar 

  22. Hu C and Dai L 2016 Angew. Chemie Int. Ed. 55 11736

    Article  CAS  Google Scholar 

  23. Ma R, Lin G, Zhou Y, Liu Q, Zhang T, Shan G et al 2019 NPJ Comput. Mater. 5 1

    Article  Google Scholar 

  24. Hu C, Xiao Y, Zou Y and Dai L 2018 Electrochem. Energy Rev. 1 84

    Article  CAS  Google Scholar 

  25. Sarapuu A, Kibena-Põldsepp E, Borghei M and Tammeveski K 2018 J. Mater. Chem. A 6 776

    Article  CAS  Google Scholar 

  26. Cui H, Guo Y, Guo L, Wang L, Zhou Z and Peng Z 2018 J. Mater. Chem. A 6 18782

    Article  CAS  Google Scholar 

  27. Xiong D, Li X, Fan L and Bai Z 2018 Catalysts 8 301

    Article  Google Scholar 

  28. Guo Z, Ren G, Jiang C, Lu X, Zhu Y, Jiang L et al 2015 Sci. Rep. 5 1

    Google Scholar 

  29. Bosu Babu D and Ramesha K 2016 Electrochem. Acta 219 290

    Google Scholar 

  30. Naumov O, Naumov S, Abel B and Varga A 2018 Nanoscale 10 6724

    Article  CAS  Google Scholar 

  31. Wong W Y, Daud W R W, Mohamad A B, Kadhum A A H, Loh K S and Majlan E H 2013 Int. J. Hydrogen Energy 38 9370

    Article  CAS  Google Scholar 

  32. Quílez-Bermejo J, Melle-Franco M, San-Fabián E, Morallón E and Cazorla-Amorós D 2019 J. Mater. Chem. A 7 24239

    Article  Google Scholar 

  33. Wang H, Maiyalagan T and Wang X 2012 ACS Catal. 2 781

    Article  CAS  Google Scholar 

  34. Bosu D and Ramesha K 2019 Carbon 144 582

    Article  Google Scholar 

  35. Liu Y, Shi Z, Gao Y, An W, Cao Z and Liu J 2016 ACS Appl. Mater. Interface 8 28283

    Article  CAS  Google Scholar 

  36. Zou B X, Gao Y, Liu B, Yu Y and Lu Y 2016 RSC Adv. 6 4483

    Article  CAS  Google Scholar 

  37. Li H, Yuan D, Tang C, Wang S, Sun J, Li Z et al 2016 Carbon 100 151

    Article  CAS  Google Scholar 

  38. Zhu S, Taberna P L, Zhao N and Simon P 2018 Electrochem. Commun. 96 6

    Article  CAS  Google Scholar 

  39. Zhang X, Zhao J, He X, Li Q, Ao C, Xia T et al 2018 Carbon 127 236

    Article  CAS  Google Scholar 

  40. Parthiban V, Bhuvaneshwari B, Karthikeyan J, Murugan P and Sahu A K 2019 Nanoscale Adv. 1 4926

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Central Instrumentation Facility, CECRI, Karaikudi, CSIR, India, for providing characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Ramesha.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 630 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosubabu, D., Parthiban, V., Sahu, A.K. et al. Nitrogen-doped graphene-like carbon from bio-waste as efficient low-cost electrocatalyst for fuel cell application. Bull Mater Sci 44, 135 (2021). https://doi.org/10.1007/s12034-021-02367-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02367-9

Keywords

Navigation