Skip to main content
Log in

FeNi alloy supported on nitrogen-doped graphene catalysts by polyol process for oxygen reduction reaction (ORR) in proton exchange membrane fuel cell (PEMFC) cathode

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A non-precious metal FeNi electrocatalyst (FeNi/NG) was prepared by a simple solution route called the polyol process for use as the oxygen reduction reaction (ORR) catalyst in polymer exchange membrane fuel cells. The nitrogen-doped graphene (NG) was synthesized from graphite oxide (GO) in a one-pot reactor via thermal annealing of GO-mixed melamine. The obtained NG presents high content of pyridinic-N and quaternary-N types with acceptable activity of ORR in acidic media by XPS and cyclic voltammetry techniques, respectively. The non-precious FeNi alloy nanoparticles (spherical-like nanoparticles mixed with hexagonal plate-like features) were successfully synthesized and well dispersed on the prepared NG by the polyol process confirmed by SEM-BSE and TEM analysis. The XRD and SAED results found FeNi and the carbon phase in the prepared catalysts. Finally, the CV technique shows that the peak potential of FeNi/NG is in the range of 0.12–0.34 V, which is close to that of the commercial Pt/C catalyst (0.35 V). To summarize, the obtained catalyst (FeNi/NG) revealed reliable electrocatalytic properties for ORR in a proton exchange membrane fuel cell cathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W. Vielstich, A. Lamm, H. A. Gasteiger, Handbook of Fuel Cells (Wiley, London, 2003), pp. 449

    Google Scholar 

  2. Z. Chen, D. Higgins, A. Yu, L. Zhang, J. Zhang, Energy Environ. Sci. 4, 9 (2011)

    CAS  Google Scholar 

  3. V.S. Bagotsky, A.M. Skundin, Y.M. Volfkovich, Electrochemical Power Sources (Wiley, New York, 2014), pp. 151–170

    Google Scholar 

  4. A. Faur Ghenciu, Curr. Opin. Solid State Mater. Sci. 6, 5 (2002)

    Article  Google Scholar 

  5. R. Othman, A.L. Dicks, Z. Zhu, Int. J. Hydrog. Energy 37, 1 (2012)

    Article  Google Scholar 

  6. R. Bashyam, P. Zelenay, Nature 443, 7107 (2006)

    Article  Google Scholar 

  7. C. Medard, M. Lefevre, J. Dodelet, F. Jaouen, G. Lindbergh, Electrochim. Acta 51, 16 (2006)

    Article  Google Scholar 

  8. S. Ye, A.K. Vijh, Electrochem. Commun. 5, 3 (2003)

    Article  Google Scholar 

  9. G. Wu, M. Nelson, S. Ma, H. Meng, G. Cui, P.K. Shen, Carbon 49, 12 (2011)

    Google Scholar 

  10. M. Huang, Y. Tang, Y. Gong, Y. Chen, Y. Sun, X. Yang, P. Wan, ChemElectroChem 2, 12 (2015)

    Google Scholar 

  11. M. García-Contreras, S. Fernández-Valverde, J.R. Vargas-Garcia, J. Alloys Compd. 434, 522 (2007)

    Article  Google Scholar 

  12. R. Yang, K. Stevens, J. Dahn, J. Electrochem. Soc. 155, 1 (2008)

    Google Scholar 

  13. Y. Shao, J. Sui, G. Yin, Y. Gao, Appl. Catal. B. Environ. 79, 1 (2008)

    Article  Google Scholar 

  14. N.P. Subramanian, X. Li, V. Nallathambi, S.P. Kumaraguru, H. Colon-Mercado, G. Wu, J.-W. Lee, B.N. Popov, J. Power Sources 188, 1 (2009)

    Article  Google Scholar 

  15. K.R. Lee, K.U. Lee, J.W. Lee, B.T. Ahn, S.I. Woo, Electrochem. Commun. 12, 8 (2010)

    Google Scholar 

  16. L. Qu, Y. Liu, J.-B. Baek, L. Dai, ACS Nano 4, 3 (2010)

    Article  Google Scholar 

  17. D. Geng, Y. Chen, Y. Chen, Y. Li, R. Li, X. Sun, S. Ye, S. Knights, Energy. Environ. Sci. 4, 3 (2011)

    Google Scholar 

  18. D. Geng, S. Yang, Y. Zhang, J. Yang, J. Liu, R. Li, T.-K. Sham, X. Sun, S. Ye, S. Knights, Appl. Surf. Sci. 257, 21 (2011)

    Article  Google Scholar 

  19. Z.-H. Sheng, L. Shao, J.-J. Chen, W.-J. Bao, F.-B. Wang, X.-H. Xia, ACS Nano 5, 6 (2011)

    Article  Google Scholar 

  20. R.J. Joseyphus, D. Kodama, T. Matsumoto, Y. Sato, B. Jeyadevan, K. Tohji, J. Magn. Magn. Mater. 310(2), 2393–2395 (2007)

    Article  CAS  Google Scholar 

  21. G. Viau, F. Fiévet-Vincent, F. Fiévet, Solid State Ion. 84, 3–4 (1996)

    Article  Google Scholar 

  22. G. Qin, W. Pei, Y. Ren, Y. Shimada, Y. Endo, M. Yamaguchi, S. Okamoto, O. Kitakami, J. Magn. Magn. Mater. 321, 24 (2009)

    Article  Google Scholar 

  23. J. Song, X. Wang, C.-T. Chang, J. Nanomater. 2014, 1 (2014)

    Google Scholar 

  24. A.R. bin Mohdá Yusoff, Nanoscale 7, 16 (2015)

    Google Scholar 

  25. T. Hu, X. Sun, H. Sun, G. Xin, D. Shao, C. Liu, J. Lian, Phys. Chem. Chem. Phys. 16, 3 (2014)

    Article  Google Scholar 

  26. K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car, Nano Lett. 8, 1 (2008)

    Article  Google Scholar 

  27. Z. Lin, G.H. Waller, Y. Liu, M. Liu, C. Wong, Carbon 53, 130 (2013)

    Article  CAS  Google Scholar 

  28. Z. Luo, S. Lim, Z. Tian, J. Shang, L. Lai, B. MacDonald, C. Fu, Z. Shen, T. Yu, J. Lin, J. Mater. Chem. 21, 22 (2011)

    CAS  Google Scholar 

  29. G. Liu, X. Li, J.-W. Lee, B.N. Popov, Catal. Sci. Technol. 1, 2 (2011)

    Article  CAS  Google Scholar 

  30. Y. Holade, N. Sahin, K. Servat, T. Napporn, K. Kokoh, Catalysts 5, 1 (2015)

    Article  Google Scholar 

  31. C. Cheng, F. Xu, H. Gu, New J. Chem. 35, 5 (2011)

    Google Scholar 

  32. B. Blin, F. Fievet, D. Beaupere, M. Figlarz, New J. Chem. 13, 1 (1989)

    Google Scholar 

  33. S. Kattel, G. Wang, J. Mater. Chem. A 36, 1 (2013)

    Google Scholar 

  34. M.L. Rigsby, D.J. Wasylenko, M.L. Pegis, J.M. Mayer, J. Am. Chem. Soc. 137, 13 (2015)

    Article  Google Scholar 

  35. J. Liu, E. Li, M. Ruan, P. Song, W. Xu, Catalysts 5, 3 (2015)

    Article  Google Scholar 

  36. S.C. Ball, S. Hudson, B. Theobald, D. Thompsett, ECS Trans. 1, 8 (2006)

    Google Scholar 

  37. Y. Garsany, O.A. Baturina, K.E. Swider-Lyons, S.S. Kocha, Anal. Chem. 82, 15 (2010)

    Article  Google Scholar 

  38. C. Wang, D. Van der Vliet, K.L. More, N.J. Zaluzec, S. Peng, S. Sun, H. Daimon, G. Wang, J. Greeley, J. Pearson, A.P. Paulikas, Nano Lett. 11, 3 (2010)

    Google Scholar 

  39. I. Takahashi, S.S. Kocha, J. Power Sources 195, 19 (2010)

    Article  Google Scholar 

  40. A.H.M. Videla, S. Ban, S. Specchia, L. Zhang, J. Zhang, Carbon 76, 511 (2014)

    Google Scholar 

  41. Y. Holade, N.E. Sahin, K. Servat, T.W. Napporn, K.B. Kokoh, Catalysts 5, 1 (2015)

    Article  Google Scholar 

  42. H. Ghanbarlou, S. Rowshanzamir, B. Kazeminasab, M.J. Parnian, J. Power Sources 273, 981 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research, Development, and Engineering (RD&E) fund through The National Nanotechnology Center (NANOTEC), The National Science and Technology Development Agency (NSTDA), Thailand (P-10-10820). Grants from the Center for Innovation in Chemistry, Postgraduate Education and Research Program in Chemistry (PERCH-CIC), and the National Research University Project of Thailand (NRU) are also acknowledged. Finally, the Graduate School of Chiang Mai University is also thanked for the general support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reungruthai Sirirak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirirak, R., Jarulertwathana, B., Laokawee, V. et al. FeNi alloy supported on nitrogen-doped graphene catalysts by polyol process for oxygen reduction reaction (ORR) in proton exchange membrane fuel cell (PEMFC) cathode. Res Chem Intermed 43, 2905–2919 (2017). https://doi.org/10.1007/s11164-016-2802-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2802-6

Keywords

Navigation