Skip to main content

Advertisement

Log in

New age monolithic design-based visible light responsive and reusable photocatalyst material using iron oxide-modified mesoporous titania framework

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this work, we report a facile route for the synthesis of worm-like mesoporous \(\hbox {Fe}_{2}\hbox {O}_{3}\)-doped \(\hbox {TiO}_{2}\) monolithic composites through a direct template sol–gel method, for the photocatalytic degradation of textile dye (acid blue 113) pollutants. The monolith surface morphology and structural properties have been characterized using p-XRD, HR-SEM–EDAX, HR-TEM–SAED, TGA, UV–Vis–DRS, PLS, FTIR, XPS and BET analyses. The stoichiometric doping of \(\hbox {Fe}_{2}\hbox {O}_{3}\) unleashes visible light photocatalytic activity through a red shift in the light absorption character of \(\hbox {TiO}_{2}\), thereby narrowing the energy band gap, and an eventual increase in \(\hbox {e}^{-}/\hbox {h}^{+}\) separation centres. The monolithic photocatalyst exhibits better properties in terms of surface area, pore volume and diameter. The physico-chemical parameters, such as solution pH, dopant stoichiometry, catalyst quantity, dye concentration, photo-sensitizers and light intensity have been optimized to enhance the photocatalysis efficiency. The photocatalyst exhibits complete dye mineralization within 0.5 h, and also reusable for five continuous cycles.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rawat D, Mishra V and Sharma R S 2016 Chemosphere 155 591

    CAS  Google Scholar 

  2. Basile A, Sorbo S, Letini M and Conte S 2017 J. Trace Elem. Med. Biol. 43 80

    CAS  Google Scholar 

  3. Hassaan M A and El Nemr A 2017 Am. J. Environ. Eng. 1 64

    Google Scholar 

  4. Thejaswini T V L, Prabhakaran D and Maheswari M A 2016 J. Mater. Sci. 51 8187

    CAS  Google Scholar 

  5. Rosa J M, Garcia V S, Boiani N F, Melo C G, Pereira M C and Borrely S I 2019 J. Environ. Chem. Eng. 7 102973

    CAS  Google Scholar 

  6. Gupta V K, Jain R, Nayak A, Agarwal S and Shrivastava M 2011 Mater. Sci. Eng. C 31 1062

    CAS  Google Scholar 

  7. Malini B and Raj G A G 2018 J. Environ. Chem. Eng. 6 5763

    CAS  Google Scholar 

  8. Ouyang J, Zhao Z, Suib S L and Yang H 2019 J. Colloid Interface Sci. 539 135

    CAS  Google Scholar 

  9. Soltani R D C and Safari M 2016 Ultrason. Sonochem. 32 181

    Google Scholar 

  10. Pirhashemi M and Habibi-Yangjeh A 2018 J. Photochem. Photobiol. A 363 31

    CAS  Google Scholar 

  11. Ebrahimi R, Maleki A, Zandsalimi Y, Ghanbari R, Shahmoradi B, Rezaee R et al 2019 J. Ind. Eng. Chem. 73 297

    CAS  Google Scholar 

  12. Saini R D 2017 Int. J. Chem. Eng. Res. 9 975

    Google Scholar 

  13. Lin S H and Chen M L 1997 Water Res. 31 868

    CAS  Google Scholar 

  14. Hao O J, Kim H and Chiang P C 2000 Crit. Rev. Environ. Sci. Technol. 30 449

    CAS  Google Scholar 

  15. Kim T H, Park C, Lee J, Shin E B and Kim S 2002 Water Res. 36 3979

    CAS  Google Scholar 

  16. Martínez-López S, Lucas-Abellán C, Serrano-Martínez A, Mercader-Ros M T, Cuartero N, Navarro P et al 2019 J. Clean. Prod. 217 757

    Google Scholar 

  17. Vinodgopal K and Peller J 2003 Res. Chem. Intermed.29 307

    CAS  Google Scholar 

  18. Zeng L, Guo X, He C and Duan C 2016 ACS Catal. 6 7935

    CAS  Google Scholar 

  19. Hisaindee S, Meetani M and Rauf M 2013 Trends Anal. Chem. 49 31

    CAS  Google Scholar 

  20. Fujishima A and Honda K 1972 Nature 238 37

    CAS  Google Scholar 

  21. Lacombe S, Fresno F and Štangar U L 2014 Environ. Sci. Pollut. Res.21 11111

    Google Scholar 

  22. Pekakis P A, Xekoukoulotakis N P and Mantzavinos D 2006 Water Res. 40 1276

    CAS  Google Scholar 

  23. Zielińska B, Grzechulska J and Morawski A W 2003 J. Photochem. Photobiol. A Chem. 157 65

    Google Scholar 

  24. Dodoo-Arhin D, Buabeng F P, Mwabora J M, Amaniampong P N, Agbe H, Nyankson E et al 2018 Heliyon 4 e00681

    Google Scholar 

  25. Yang X and Wang D 2018 ACS Appl. Energy Mater. 1 6657

    CAS  Google Scholar 

  26. Magnone E, Kim M K, Lee H J and Park J H 2019 Ceram. Int.45 3359

    CAS  Google Scholar 

  27. Mrowetz M, Balcerski W, Colussi A and Hoffmann M R 2004 J. Phys. Chem. B 108 17269

    CAS  Google Scholar 

  28. Mao H, Fei Z, Bian C, Yu L, Chen S and Qian Y 2019 Ceram. Int. 45 12586

    CAS  Google Scholar 

  29. Chen W T, Chan A, Al-Azri Z H, Dosado A G, Nadeem M A, Sun-Waterhouse D et al 2015 J. Catal. 329 499

    CAS  Google Scholar 

  30. Dubnová L, Zvolská M, Edelmannová M, Matějová L, Reli M, Drobná H et al 2019 Appl. Surf. Sci. 469 879

    Google Scholar 

  31. Pacheco-Torgal F and Jalali S 2011 Constr. Build. Mater. 25 582

    Google Scholar 

  32. Goswami L, Kim K H, Deep A, Das P, Bhattacharya S, Kumar S et al 2017 J. Environ. Manag. 196 297

    CAS  Google Scholar 

  33. Bostan H B, Rezaee R, Valokala M G, Tsarouhas K, Golokhvast K and Tsatsakis A M 2016 Life Sci. 165 91

    CAS  Google Scholar 

  34. Yang X Y, Chen L H, Li Y, Rooke J C, Sanchez C and Su B L 2017 Chem. Soc. Rev. 46 481

    CAS  Google Scholar 

  35. Sun M H, Huang S Z, Chen L H, Li Y, Yang X Y, Yuan Z Y et al 2016 Chem. Soc. Rev. 45 3479

    CAS  Google Scholar 

  36. Koodali R T and Zhao D 2010 Energy Environ. Sci. 3 608

    CAS  Google Scholar 

  37. Drisko G L, Zelcer A S, Wang X, Caruso R A and Soler-Illia G J D A 2012 ACS Appl. Mater. Interfaces 4 4123

    CAS  Google Scholar 

  38. Nursam N M, Wang X, Tan J Z and Caruso R A 2016 ACS Appl. Mater. Interfaces 8 17194

    CAS  Google Scholar 

  39. Boscaro P, Cacciaguerra T, Cot D, Fajula F, Hulea V and Galarneau A 2019 Microporous Mesoporous Mater. 280 37

    CAS  Google Scholar 

  40. Thejaswini T V L, Prabhakaran D and Maheswari M A 2017 J. Photochem. Photobiol. A Chem. 344 212

    CAS  Google Scholar 

  41. Gomaa H, Khalifa H, Selim M, Shenashen M, Kawada S, Alamoudi A S et al 2017 ACS Sustain. Chem. Eng. 5 10826

  42. Backlund S, Smått J H, Rosenholm J B and Lindén M 2007 J. Dispers. Sci. Technol. 28 115

    CAS  Google Scholar 

  43. Yang H, Zhu W, Sun S and Guo X 2014 RSC Adv. 4 32934

    CAS  Google Scholar 

  44. Zhang Y H and Reller A 2001 J. Mater. Chem. 11 2537

    CAS  Google Scholar 

  45. García-Muñoz P, Zussblatt N P, Pliego G, Zazo J A, Fresno F, Chmelka B F et al 2019 J. Environ. Manag. 238 243

    Google Scholar 

  46. Zou M, Xiong F, Ganeshraja A S, Feng X, Wang C, Thomas T et al 2017 Mater. Chem. Phys. 195 259

    CAS  Google Scholar 

  47. Patra A K, Dutta A and Bhaumik A 2012 ACS Appl. Mater. Interfaces 4 9

    Google Scholar 

  48. Moradi H, Eshaghi A, Hosseini S R and Ghani K 2016 Ultrason. Sonochem. 32 314

    CAS  Google Scholar 

  49. Abidov A, Allabergenov B, Lee J, Jeon H W, Jeong S W and Kim S 2013 Int. J. Mater. Mech. Manuf. 1 294

    CAS  Google Scholar 

  50. Kumaresan L, Prabhu A, Palanichamy M, Arumugam E and Murugesan V 2011 J. Hazard. Mater. 186 1183

    CAS  Google Scholar 

  51. Ali T, Tripathi P, Azam A, Raza W, Ahmed A S, Ahmed A et al 2017 Mater. Res. Express 4 015022

    Google Scholar 

  52. Long T, Xu L, Zhang T and Wang Y 2014 Mater. Manuf. Process. 29 743

    CAS  Google Scholar 

  53. Ruzimuradov O, Nurmanov S, Hojamberdiev M, Prasad R M, Gurlo A, Broetz J et al 2014 J. Eur. Ceram. Soc. 34 809

    CAS  Google Scholar 

  54. Du J, Wang Z, Zhao G, Qian Y, Chen H, Yang J et al 2014 Microporous Mesoporous Mater. 195 167

    CAS  Google Scholar 

  55. Ruzimuradov O, Hojamberdiev M, Fasel C and Riedel R 2017 J. Alloys Compd. 699 144

    CAS  Google Scholar 

  56. Shen Y, Wang W and Xiao K 2016 J. Environ. Chem. Eng. 4 1259

    CAS  Google Scholar 

  57. Sharma M, Singh J and Basu S 2019 Microchem. J145 708

    CAS  Google Scholar 

  58. Singh J, Sharma S and Basu S 2019 J. Photochem. Photobiol. A Chem376 32

    CAS  Google Scholar 

  59. Thejaswini T V L, Prabhakaran D and Maheswari M A 2017 Funct. Mater. Lett10 1750006

    CAS  Google Scholar 

  60. Chang W, Yan L, Liu B and Sun R 2017 Ceram. Int. 43 5881

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the instrumentation support from VIT-Chennai, VIT-Vellore, IIT-Kanpur, BIT-Bengaluru and IIT-Madras, for material characterization. We also thank IGCAR-Kalpakkam for the technical support. This study was funded by Vellore Institute of Technology, Vellore, in the form of Institute Seed Grant, during the financial year 2018–19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Prabhakaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S.N., James, V., James, V. et al. New age monolithic design-based visible light responsive and reusable photocatalyst material using iron oxide-modified mesoporous titania framework. Bull Mater Sci 43, 84 (2020). https://doi.org/10.1007/s12034-020-2040-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-2040-9

Keywords

Navigation