Skip to main content
Log in

Synergy studies on polyurethane–carbon black, multi-walled carbon nanotube-based heterogeneous electroactive shape memory nanocomposite system

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This paper describes a multi-filler synergy study that was carried out for multi-walled carbon nanotubes (MWCNTs) and carbon black (CB) filler systems in polyurethane (PU) resin, and the individual contributions of the fillers were evaluated. The hybrid nanocomposite was found resistant to ultraviolet radiation and exhibited a high glass transition temperature enabling it suitable for space applications. The contributions of individual fillers in the hybrid system were compared with the binary nanocomposites of respective fillers and the advantages of hybrid system are also highlighted. The synthesized hybrid polymer nanocomposite (PU + CB + MWCNT) was found to have superior thermal, electrical and mechanical properties even at a very low content of reinforcements and a percolation threshold of 5% CB and 0.15% MWCNT combination was also observed. Shape memory effect of the hybrid system was evaluated and compared with binary systems. A faster recovery time of 41 s was observed for a combination of 5% CB and 0.25% MWNT against 50 s for 25% CB alone upon thermal actuation. On electrical actuation, the hybrid nanocomposite system was observed to have a three-fold faster recovery compared to the binary systems of CB alone. The hybrid system proves to be a reliable choice for replacing an expensive single reinforcement system of MWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Bahadar K S, Kalsoom A and Asiri A M 2016 Dev. Prospect. Appl. Nanosci. Nanotechnol. 23 157

    Google Scholar 

  2. Li Y, Samad Yarjan A, Kyriaki P, Alhassan S M and Liao K 2014 Sci. Rep. 4 1

    Google Scholar 

  3. Kerstin M, Elodie B, Marcos L, Maria J, Yolanda E S, José L et al 2017 Nanomaterials 7 74

    Article  Google Scholar 

  4. Arun D I, Santhosh K K S, Satheesh K B, Chakravarthy P, Mathew D and Santhosh B 2019 Mater. Sci. Technol. 35 596

    Article  CAS  Google Scholar 

  5. Arun D I, Chakravarthy P, Girish B S, Santhosh S and Santhosh B 2019 Smart Mater. Struct. 28 55010

    Article  CAS  Google Scholar 

  6. Han Z and Fina A 2011 Prog. Polym. Sci. 36 914

    Article  CAS  Google Scholar 

  7. Cheng M P, Yang L M, Hao Z, Qi W S, Rui W, Kai W et al 2009 ACS Appl. Mater. Interfaces 1 1090

    Article  Google Scholar 

  8. Jang S and Yin H 2016 J. Compos. Mater. 51 171

    Article  Google Scholar 

  9. Xiaodong Q, Peng D, Zhenwei L, Tianyu L and Qiang F 2016 Compos. Sci. Technol. 125 38

    Article  Google Scholar 

  10. Ajayan Pulickel M, Schadler Linda S, Cindy G and Angel R 2000 Adv. Mater. Res. 12 750

    Article  Google Scholar 

  11. Yanju L, Haiyang D, Liwu L and Jinsong L 2014 Smart Mater. Struct. 23 023001

    Article  Google Scholar 

  12. Yanju L, Xiaohua W, Xin L, Haibao L and Jinsong L 2008 Proc. SPIE 2008; Sensors Smart Struct. Technol. Civil, Mech. Aerosp. Syst. 6932 693210

  13. Deqing X, Ruihao Y, Yumei Z, Dezhen X, Turab L, Guojun Z et al 2016 Sci. Rep. 6 28244

    Article  Google Scholar 

  14. Huang W M, Ding Z, Wang C C, Wei J, Zhao Y and Purnawali H 2010 Mater. Today 13 54

    Article  CAS  Google Scholar 

  15. Leng J S, Huang W M, Lan X, Liu Y J and Du S Y 2008 Appl. Phys. Lett. 92 204101

    Article  Google Scholar 

  16. Xin L, Jinsong L, Du L Y and Yi S 2008 Adv. Mater. Res. 47–50 714

    Google Scholar 

  17. Ding Z 2012 PhD thesis (Nanyang Technological University)

  18. Christian M, Sandler Jan K W, Shaffer M S P, Schwarz M K, Wolfgang B, Schulte K et al 2004 Compos. Sci. Technol. 64 2309

    Article  Google Scholar 

  19. Yoshino K, Kajii H, Araki H, Sonoda T, Take H and Lee S 1999 Full Sci. Technol. 7 695

    Article  CAS  Google Scholar 

  20. Bauhover W and Kovacs J Z 2009 Compos. Sci. Technol. 69 1486

    Article  Google Scholar 

  21. Backes E H, Passador F R, Leopold C, Fiedler B and Pessan L A 2018 Electr. J. Compos. Mater. 52 3209

    Article  CAS  Google Scholar 

  22. Ismail H, Ramly A F and Othman N 2011 Polym. Plast. Technol. Eng. 50 660

    Article  CAS  Google Scholar 

  23. Schartel B, Dittrich B, Wartig K, Hofmann D and Rolf M 2015 Polym. Compos. 36 1230

    Article  Google Scholar 

  24. Bhattacharya M 2016 Polym. Nanocomposites Mater. (Basel) 9 1

    CAS  Google Scholar 

  25. Cheng M P, Hao Z, Qi W S, Kei W Y, Zhong T B and Hyung H S et al 2007 Proc. of EMAP 2007—Int. Conf. Electron. Mater. Packag. 2007 2

    Google Scholar 

  26. Ruhua Z, Ming C, Tuo S, Reddeppa N, Tongwu J, Zongwen Z et al 2017 RSC Adv. 7 1177

    Article  Google Scholar 

  27. Song S H 2018 Int. J. Polym. Sci. 2018 1

    Article  Google Scholar 

  28. Dorigato A, Brugnara M and Pegoretti A 2018 Adv. Polym. Technol. 37 1744

    Article  CAS  Google Scholar 

  29. Kumar S, Sun L L, Caceres S, Li B, Wood W, Perugini A et al 2010 Nanotechnology 21 105702

    Article  CAS  Google Scholar 

  30. Yan N, Wu J K, Zhan Y H and Xia H S 2009 Plast. Rubber Compos. 38 290

    Article  CAS  Google Scholar 

  31. Safdari M and Al-Haik M 2012 Nanotechnology 23 405202

    Article  CAS  Google Scholar 

  32. Zhang H, Wang H, Zhong W and Du Q 2009 Polymer (Guildf) 50 1596

    Article  CAS  Google Scholar 

  33. Song W S 2016 PhD thesis (Georgia Institute of Technology)

  34. Robert A O and William T S 1983 United States Patent: 4387194

  35. George W 2015 Handbook of UV degradation and stabilization (Canada: ChemTec Publishing). ISBN 9781895198867

  36. Arun D I, Arun Kumar R, Chakravarthy P, Girish B S, Santhosh Kumar K S and Santhosh B 2019 Mater. Sci. Technol. 35 1

    Google Scholar 

  37. Sun X and Song M 2009 Macromol. Theory Simul. 18 155

    Article  CAS  Google Scholar 

  38. Kashy E and Suckling E E 2019 Encyclopaedia Britannica, inc. https://www.britannica.com/science/electricity/Conductors-insulators-and-semiconductors

  39. Arun D I, Chakravarthy P, Arockiakumar R and Santhosh B 2018 Shape memory materials (Boca Raton: CRC press) ISBN: 978-0815359692

  40. Fonseca M A, Abreu B, Gonçalves F A M M, Ferreira A G M, Moreira R A S and Oliveira M S A 2013 Compos. Struct. 99 105

    Article  Google Scholar 

Download references

Acknowledgements

The staff of PSCD/ASD-PCM, chemical laboratory—CCQG/electronics laboratory—TSD-CMSE, Vikram Sarabhai Space Centre (VSSC), Aerospace materials laboratory, Liquid Propulsion Systems Centre (LPSC) and the libraries of VSSC and ISRO Inertial Systems Unit are acknowledged for the support extended for the synthesis, characterization and completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D I ARUN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ARUN, D.I., CHAKRAVARTHY, P. & SANTHOSH KUMAR, K.S. Synergy studies on polyurethane–carbon black, multi-walled carbon nanotube-based heterogeneous electroactive shape memory nanocomposite system. Bull Mater Sci 43, 219 (2020). https://doi.org/10.1007/s12034-020-02213-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02213-4

Keywords

Navigation