Skip to main content
Log in

Ovalbumin-stabilized concentrated emulsion gels

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, ovalbumin is used as the sole emulsifier to produce stable concentrated oil (oil phase = 70 wt%) in water emulsion near ovalbumin isoelectric point. The emulsions display excellent stability against flocculation and coalescence at ovalbumin concentration ranging from 0.6 to 1 wt%. The oil–water interfacial tension decreases in the presence of ovalbumin, indicating the adsorption of ovalbumin at the interface. Although the increase in ovalbumin from 0.1 to 1 wt% does not significantly influence the equilibrium interfacial tension, the surface mean diameter of the emulsion droplets decreases as the concentration increases from 0.1 to 1 wt%. These emulsions exhibit solid gel-like behaviour. At low ovalbumin concentrations (0.1–0.4 wt%), emulsions undergo a phase separation after 24 h. We hypothesize that emulsions with higher ovalbumin content contain oil droplets with multilayer adsorbed films. The steric stabilization due to adsorbed multilayers and the ability of rigid interfacial films to withstand external droplet pressures upon contact contributes to emulsion stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Van Der Gucht J 2018 Front. Phys. 6 87

    Google Scholar 

  2. Frenkel D 2002 Physica A 313 1

    CAS  Google Scholar 

  3. Nagel S R 2017 Rev. Mod. Phys. 89 025002

    Google Scholar 

  4. Cohen-Addad S and Höhler R 2014 Curr. Opin. Colloid Interface Sci. 19 536

    CAS  Google Scholar 

  5. Evans R, Frenkel D and Dijkstra M 2019 Phys. Today 72 38

    CAS  Google Scholar 

  6. Mundoor H, Park S, Senyuk B, Wensink H H and Smalyukh I I 2018 Science 360 768

    CAS  Google Scholar 

  7. Boire A, Bouchoux A, Bouhallab S, Chapeau A-L, Croguennec T, Ferraro V et al 2018 Innov. Food Sci. Emerg. Technol. 46 18

    Google Scholar 

  8. Bizmark N and Ioannidis M A 2018 Soft Matter 14 6404

    CAS  Google Scholar 

  9. Werner M, Auth T, Beales P A, Fleury J B, Höök F, Kress H et al 2018 Biointerphases 13 028501

    Google Scholar 

  10. Sun H, Kabb C P, Sims M B and Sumerlin B S 2019 Prog. Polym. Sci. 89 61

    CAS  Google Scholar 

  11. Wang L, Zhang Y, Chen L, Xu H and Xiong Y 2018 Adv. Mater. 30 1801955

    Google Scholar 

  12. Giustiniani A, Weis S, Poulard C, Kamm P H, García-Moreno F, Schröter M et al 2018 Soft Matter 14 7310

    CAS  Google Scholar 

  13. Höhler R and Weaire D 2019 Adv. Colloid Interface Sci. 263 19

    Google Scholar 

  14. Modak S, Guru Krishna Kumar V, Gupta S and Thareja P 2017 J. Disp. Sci. Techol. 38 1266

    CAS  Google Scholar 

  15. Mukherjee R and Sharma A 2015 Soft Matter 11 8717

    CAS  Google Scholar 

  16. Varughese S M and Bhandaru N 2020 Soft Matter 16 1692

    CAS  Google Scholar 

  17. Guzey D and McClements D J 2006 Adv. Colloid Interface Sci. 128 227

    Google Scholar 

  18. Chen L, Remondetto G E and Subirade M 2006 Trends Food Sci. Technol. 17 272

    CAS  Google Scholar 

  19. Agredo P, Rave M C, Echeverri J D, Romero D and Salamanca C H 2019 Cosmetics 6 12

    CAS  Google Scholar 

  20. Jiao B, Shi A, Wang Q and Binks B P 2018 Angew. Chem. Int. Ed. Engl. 57 9274

    CAS  Google Scholar 

  21. Li Z, Dai L, Wang D, Mao L and Gao Y 2018 J. Agric. Food Chem. 66 3922

    CAS  Google Scholar 

  22. Perrin E, Bizot H, Cathala B and Capron I 2014 Biomacromolecules 15 3766

    CAS  Google Scholar 

  23. Liu S, Jin M, Chen Y, Gao H, Shi X, Cheng W et al 2017 J. Mater. Chem. B 5 2671

    CAS  Google Scholar 

  24. Ikem V O, Menner A and Bismarck A 2008 Angew. Chem. Int. Ed. Engl. 47 8277

    CAS  Google Scholar 

  25. Gossard A, Toquer G, Grandjean A and Causse J 2014 Colloids. Surf. A. Physicochem. Eng. Asp. 462 162

    CAS  Google Scholar 

  26. Yang T, Liu T-X, Li X-T and Tang C-H 2019 Food Hydrocoll. 94 255

    CAS  Google Scholar 

  27. Ono F, Shinkai S and Watanabe H 2018 New J. Chem. 42 6601

    CAS  Google Scholar 

  28. Zhou F-Z, Huang X-N, Wu Z-L, Yin S-W, Zhu J-H, Tang C-H et al 2018 J. Agric. Food Chem. 66 11113

    CAS  Google Scholar 

  29. Yuan D, Hu Y, Zeng T, Yin S, Tang C and Yang X 2017 Food Funct. 8 2220

    CAS  Google Scholar 

  30. Zeng T, Wu Z-L, Zhu J-Y, Yin S-W, Tang C-H, Wu L-Y et al 2017 Food Chem. 231 122

    CAS  Google Scholar 

  31. Zamani S, Malchione N, Selig M J and Abbaspourrad A 2018 Food Funct. 9 982

    CAS  Google Scholar 

  32. Chen S and Zhang L-M 2019 Colloids. Surf. A. Physicochem. Eng. Asp. 579 231

    Google Scholar 

  33. Li Z, Ming T, Wang J and Ngai T 2009 Angew. Chem. Int. Ed. Engl. 48 8490

    CAS  Google Scholar 

  34. Liang H-N and Tang C-H 2014 LWT—Food Sci. Technol. 58 463

    CAS  Google Scholar 

  35. Wouters A G and Delcour J A 2019 Curr. Opin. Food Sci. 25 19

    Google Scholar 

  36. Li X and de Vries R 2018 Curr. Opin. Food Sci. 21 51

    Google Scholar 

  37. McClements D J 2004 Curr. Opin. Colloid Interface Sci. 9 305

    CAS  Google Scholar 

  38. Panjwani B, Gupta S and Thareja P 2018 J. Disp. Sci. Techol. 39 1126

    CAS  Google Scholar 

  39. Liu F and Tang C-H 2013 J. Agric. Food Chem. 61 8888

    CAS  Google Scholar 

  40. Xu Y-T, Tang C-H, Liu T-X and Liu R 2018 J. Agric. Food Chem. 66 8795

    CAS  Google Scholar 

  41. Li Z, Xiao M, Wang J and Ngai T 2013 Macromol. Rapid Commun. 34 169

    Google Scholar 

  42. Liu X, Guo J, Wan Z-L, Liu Y-Y, Ruan Q-J and Yang X-Q 2018 Food Hydrocoll. 77 168

    Google Scholar 

  43. Tan H, Sun G, Lin W, Mu C and Ngai T 2014 ACS Appl. Mater. Interfaces 6 13977

    CAS  Google Scholar 

  44. Xu Y-T, Liu T-X and Tang C-H 2019 Food Hydrocoll. 88 21

    CAS  Google Scholar 

  45. Ren Z, Chen Z, Zhang Y, Lin X and Li B 2019 Food Hydrocoll. 96 322

    CAS  Google Scholar 

  46. Wakita K and Imura T 2018 J. Oleo Sci. 67 18140

    Google Scholar 

  47. Foudazi R, Qavi S, Masalovalbumin I and Malkin A Y 2015 Adv. Colloid Interface Sci. 220 78

    CAS  Google Scholar 

  48. Hoffmann H and Reger M 2014 Adv. Colloid Interface Sci. 205 94

    CAS  Google Scholar 

  49. Dickinson E 1998 Curr. Opin. Colloid Interface Sci. 3 633

    CAS  Google Scholar 

  50. Demetriades K, Coupland J N and McClements D 1997 J. Food Sci. 62 342

    CAS  Google Scholar 

  51. Onsaard E, Vittayanont M, Srigam S and McClements D J 2005 J. Agric. Food Chem. 53 5747

    CAS  Google Scholar 

  52. Beeley J, Stevenson S and Beeley J 1972 Biochim. Biophys. Acta-Protein Struct. M 285 293

    CAS  Google Scholar 

  53. Attwood S J, Kershaw R, Uddin S, Bishop S M and Welland M E 2019 J. Mater. Chem. B 7 2349

    CAS  Google Scholar 

  54. Pezennec S, Gauthier F, Alonso C, Graner F, Croguennec T, Brule G et al 2000 Food Hydrocoll. 14 463

    CAS  Google Scholar 

  55. Hartvig R A, Van De Weert M, Østergaard J, Jorgensen L and Jensen H 2011 Langmuir 27 2634

    CAS  Google Scholar 

  56. Gaonkar A G 1989 J. Am. Oil Chem. Soc. 66 1090

    CAS  Google Scholar 

  57. McClements D J and Gumus C E 2016 Adv. Colloid Interface Sci. 234 3

    CAS  Google Scholar 

  58. Rayner M, Timgren A, Sjöö M and Dejmek P 2012 J. Sci. Food Agric. 92 1841

    CAS  Google Scholar 

  59. Graham D E and Phillips M 1979 J. Colloid Interface Sci. 70 427

    CAS  Google Scholar 

  60. Delahaije R J, Wierenga P A, van Nieuwenhuijzen N H, Giuseppin M L and Gruppen H 2013 Langmuir 29 11567

    CAS  Google Scholar 

  61. Dickinson E, Golding M and Povey M J 1997 J. Colloid Interface Sci. 185 515

    CAS  Google Scholar 

Download references

Acknowledgements

Y C Saraswat thanks the Department of Science and Technology, SERB (EMR/2016/003840), Govt of India for providing the Junior Research Fellow fellowship. We acknowledge IIT Gandhinagar for the confocal imaging facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Thareja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thareja, P., Saraswat, Y.C. & Oberoi, C. Ovalbumin-stabilized concentrated emulsion gels. Bull Mater Sci 43, 194 (2020). https://doi.org/10.1007/s12034-020-02163-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02163-x

Keywords

Navigation