Skip to main content
Log in

Evaluation of Emulsifying Ability of Phospholipids by Langmuir Monolayers and Stability of High Oil Ratio O/W Emulsions

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

High oil ratio fat emulsion injections are prone to poor emulsification, rapid creaming, and other quality problems; therefore, the selection of emulsifiers with high emulsifying ability is crucial for the production of fat emulsions. The existing methods used to evaluate the emulsifying ability of emulsifier are to evaluate the emulsifying ability from the emulsifier itself. In the study, Langmuir monolayer selected the most miscible phospholipid with oil phase from the alternative three phospholipids by studying the molecular interaction between oil phase and phospholipid at the air/water interface. The miscibility and thermodynamic stability analyses of the different oil phase/phospholipid mixed monolayers were performed, and the data from \({\Delta A}_{exc}\) and \({\Delta G}_{ex}\) concluded that all three oil phases had the strongest molecular interaction with E80 and the best miscibility. The emulsions were then prepared and analyzed by the results of particle size, ζ-potential, and stability of the emulsions, where the surface free energy in the stability test echoed the results reflected by the \({\Delta G}_{ex}\) values in the thermodynamic stability test. These results indicate that Langmuir monolayers can be used to study the interaction between oil phase and emulsifier, thus providing new ideas for evaluating the emulsifying ability of phospholipids.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lee SI, Valim C, Johnston P, Le HD, Meisel J, Arsenault DA, et al. Impact of fish oil-based lipid emulsion on serum triglyceride, bilirubin, and albumin levels in children with parenteral nutrition-associated liver disease. Pediatr Res. 2009;66(6):698–703. https://doi.org/10.1203/PDR.0b013e3181bbdf2b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pironi L, Colecchia A, Guidetti M, Belluzzi A, D’Errico A. Fish oil-based emulsion for the treatment of parenteral nutrition associated liver disease in an adult patient. e-SPEN, the European e-Journal of Clinical Nutrition and Metabolism. 2010;5(5):e243–6. https://doi.org/10.1016/j.eclnm.2010.08.003.

    Article  Google Scholar 

  3. Nii T, Ishii F. Dialkylphosphatidylcholine and egg yolk lecithin for emulsification of various triglycerides. Colloids Surf B Biointerfaces. 2005;41(4):305–11. https://doi.org/10.1016/j.colsurfb.2004.12.017.

    Article  CAS  PubMed  Google Scholar 

  4. Sun Y, Ma L, Fu Y, Dai H, Zhang Y. Fabrication and characterization of myofibrillar microgel particles as novel Pickering stabilizers: effect of particle size and wettability on emulsifying capacity. Lwt. 2021;151. https://doi.org/10.1016/j.lwt.2021.112002.

  5. Liu F, Tang C-H. Soy glycinin as food-grade Pickering stabilizers: part. II. Improvement of emulsification and interfacial adsorption by electrostatic screening. Food Hydrocolloids. 2016;60:620–30. https://doi.org/10.1016/j.foodhyd.2015.10.024.

    Article  CAS  Google Scholar 

  6. Freudenthal O, Quiles F, Francius G, Wojszko K, Gorczyca M, Korchowiec B, et al. Nanoscale investigation of the interaction of colistin with model phospholipid membranes by Langmuir technique, and combined infrared and force spectroscopies. Biochim Biophys Acta. 2016;1858(11):2592–602. https://doi.org/10.1016/j.bbamem.2016.07.015.

    Article  CAS  PubMed  Google Scholar 

  7. Gzyl-Malcher B, Handzlik J, Klekowska E. Interaction of prazosin with model membranes — a Langmuir monolayer study. Bioelectrochemistry. 2012;87:96–103. https://doi.org/10.1016/j.bioelechem.2011.12.005.

    Article  CAS  PubMed  Google Scholar 

  8. Macdonald RC. Simon SAJPotNAoSotUSoA. Lipid monolayer states and their relationships to bilayers. 1987;84(12):4089–93.

    CAS  Google Scholar 

  9. Yin T, Cao X, Liu X, Wang J, Shi C, Su J, et al. Interfacial molecular interactions based on the conformation recognition between the insoluble antitumor drug AD-1 and DSPC. Colloids Surf B Biointerfaces. 2016;146:902–9. https://doi.org/10.1016/j.colsurfb.2016.07.040.

    Article  CAS  PubMed  Google Scholar 

  10. Hac-Wydro K, Wydro P, Jagoda A, Kapusta J. The study on the interaction between phytosterols and phospholipids in model membranes. Chem Phys Lipids. 2007;150(1):22–34. https://doi.org/10.1016/j.chemphyslip.2007.06.211.

    Article  CAS  PubMed  Google Scholar 

  11. Hallikainen M, Huikko L, Kontra K, Nissinen M, Piironen V, Miettinen T, et al. Effect of parenteral serum plant sterols on liver enzymes and cholesterol metabolism in a patient with short bowel syndrome. Nutr Clin Pract. 2008;23(4):429–35. https://doi.org/10.1177/0884533608321138.

    Article  PubMed  Google Scholar 

  12. Llop JM, Virgili N, Moreno-Villares JM, García-Peris P, Serrano T, Forga M, et al. Phytosterolemia in parenteral nutrition patients: implications for liver disease development. Nutrition. 2008;24(11):1145–52. https://doi.org/10.1016/j.nut.2008.06.017.

    Article  CAS  PubMed  Google Scholar 

  13. Ladhe AR, Krishna Kumar NS. Chapter 5 - Application of membrane technology in vegetable oil processing. In: Cui ZF, Muralidhara HS, editors. Membrane technology. Oxford: Butterworth-Heinemann; 2010. p. 63–78.

    Chapter  Google Scholar 

  14. He F, Li RX, Wu DC. Monolayers of mixture of alkylaminomethyl rutin and lecithin at the air/water interface. J Colloid Interface Sci. 2010;349(1):215–23. https://doi.org/10.1016/j.jcis.2010.04.080.

    Article  CAS  PubMed  Google Scholar 

  15. Lee YL, Lin JY, Chang CH. Thermodynamic characteristics and Langmuir-Blodgett deposition behavior of mixed DPPA/DPPC monolayers at air/liquid interfaces. J Colloid Interface Sci. 2006;296(2):647–54. https://doi.org/10.1016/j.jcis.2005.09.050.

    Article  CAS  PubMed  Google Scholar 

  16. Castelli F, Sarpietro MG, Rocco F, Ceruti M, Cattel L. Interaction of lipophilic gemcitabine prodrugs with biomembrane models studied by Langmuir-Blodgett technique. J Colloid Interface Sci. 2007;313(1):363–8. https://doi.org/10.1016/j.jcis.2007.04.018.

    Article  CAS  PubMed  Google Scholar 

  17. Bot F, Cossuta D, O’Mahony JA. Inter-relationships between composition, physicochemical properties and functionality of lecithin ingredients. Trends Food Sci Technol. 2021;111:261–70. https://doi.org/10.1016/j.tifs.2021.02.028.

    Article  CAS  Google Scholar 

  18. Gershfeld NL. Lipid and biopolymer monolayers at liquid interfaces: K. S. Birdi, Plenum Press, New York, 1989, 325 pp. Journal of Colloid and Interface Science. 1989;132(1):288. https://doi.org/10.1016/0021-9797(89)90241-5.

    Article  Google Scholar 

  19. Fell GL, Nandivada P, Gura KM, Puder M. Intravenous lipid emulsions in parenteral nutrition. Adv Nutr. 2015;6(5):600–10. https://doi.org/10.3945/an.115.009084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Daen J, Insoluble monolayers at liquid-gas interfaces: By George L. Gaines, Jr. Interscience Publishers, New York (1966) 386 pp $14.00. Journal of Colloid and Interface Science. 1996;22(3):309. https://doi.org/10.1016/0021-9797(66)90041-5.

    Article  Google Scholar 

  21. Philippoff W. Proceedings of the Second International Congress of surface activity, vol. I, gas/liquid and liquid/liquid interface: 521 pages, diagrams, 6 x 912 in. New York, Academic Press Inc., 1958. Price: $15.00; complete set of 4 vols., $50.00. Journal of the Franklin Institute. 1958;266(3):241–2. https://doi.org/10.1016/0016-0032(58)90274-6.

    Article  Google Scholar 

  22. Calder PC, Jensen GL, Koletzko BV, Singer P, Wanten GJ. Lipid emulsions in parenteral nutrition of intensive care patients: current thinking and future directions. Intensive Care Med. 2010;36(5):735–49. https://doi.org/10.1007/s00134-009-1744-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ayers P, Boullata JI, Guenter P, Holcombe B. Lipid injectable emulsions: infusion confusion. JPEN J Parenter Enteral Nutr. 2018;42(4):675–6. https://doi.org/10.1177/0148607117695252.

    Article  PubMed  Google Scholar 

  24. Ma P, Zeng Q, Tai K, He X, Yao Y, Hong X, et al. Preparation of curcumin-loaded emulsion using high pressure homogenization: impact of oil phase and concentration on physicochemical stability. LWT. 2017;84:34–46. https://doi.org/10.1016/j.lwt.2017.04.074.

    Article  CAS  Google Scholar 

  25. Tang H-F, Huang Z-Y, Xiao M. Effects of particle size and temperature on surface thermodynamic functions of cubic nano-Cu<sub>2</sub>O. Acta Phys Chim Sin. 2016;32(11):2678–84. https://doi.org/10.3866/pku.Whxb201608084.

    Article  CAS  Google Scholar 

  26. Piloyan GO, Bortnikov NS, Boeva NM. The determination of surface thermodynamic properties of nanoparticles by thermal analysis. J Mod Phys. 2013;04(07):16–21. https://doi.org/10.4236/jmp.2013.47A2003.

    Article  CAS  Google Scholar 

  27. Peng J, Dong WJ, Li L, Xu JM, Jin DJ, Xia XJ, et al. Effect of high-pressure homogenization preparation on mean globule size and large-diameter tail of oil-in-water injectable emulsions. J Food Drug Anal. 2015;23(4):828–35. https://doi.org/10.1016/j.jfda.2015.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Robert C, Couedelo L, Vaysse C, Michalski MC. Vegetable lecithins: a review of their compositional diversity, impact on lipid metabolism and potential in cardiometabolic disease prevention. Biochimie. 2020;169:121–32. https://doi.org/10.1016/j.biochi.2019.11.017.

    Article  CAS  PubMed  Google Scholar 

  29. Wang M, Yan W, Zhou Y, Fan L, Liu Y, Li J. Progress in the application of lecithins in water-in-oil emulsions. Trends Food Sci Technol. 2021;118:388–98. https://doi.org/10.1016/j.tifs.2021.10.019.

    Article  CAS  Google Scholar 

  30. Balcaen M, Steyls J, Schoeppe A, Nelis V, Van der Meeren P. Phosphatidylcholine-depleted lecithin: a clean-label low-HLB emulsifier to replace PGPR in w/o and w/o/w emulsions. J Colloid Interface Sci. 2021;581(Pt B):836–46. https://doi.org/10.1016/j.jcis.2020.07.149.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Mega-project for Innovative Drugs (No. 2019ZX09721001), National Key R&D Program of China (No. 2020YFE0201700), and Liaoning Revitalization Talents Program (XLYC1908031).

Author information

Authors and Affiliations

Authors

Contributions

Shanghui Li: acquisition, analysis, and interpretation of data for the work; drafting the work.

Bing Zhang: acquisition, analysis, and interpretation of data for the work.

Minsi Chang: acquisition, analysis, and interpretation of data for the work.

Ruirong Zhang: acquisition, analysis, and interpretation of data for the work.

Bei Liu: acquisition, analysis, and interpretation of data for the work.

Tian Yin: design of the work; analysis, interpretation of data for the work.

Yu Zhang: design of the work; analysis, interpretation of data for the work.

Haibing He: design of the work; analysis, interpretation of data for the work.

Jingxin Gou: design of the work; analysis, interpretation of data for the work; drafting the work.

Yanjiao Wang: design of the work; analysis, interpretation of data for the work; drafting the work.

Xing Tang: design of the work; analysis, interpretation of data for the work; drafting the work.

Corresponding authors

Correspondence to Jingxin Gou or Yanjiao Wang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zhang, B., Chang, M. et al. Evaluation of Emulsifying Ability of Phospholipids by Langmuir Monolayers and Stability of High Oil Ratio O/W Emulsions. AAPS PharmSciTech 23, 208 (2022). https://doi.org/10.1208/s12249-022-02325-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02325-6

KEY WORDS

Navigation