Skip to main content
Log in

A study of the early hydration processes and properties of fly ash-slag binders

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The results of a study on the early hydration process of pastes composed of ground granulated blast furnace slag and fly ash from fluidized bed combustion of brown coal are presented here. The results of the tests concerning setting time, hydration processes (spectroscopy, calorimetry and thermogravimetry) and mechanical strength confirm that the hydration process occurs and solid microstructures and hydration products (hydrated calcium silicates and aluminosilicates, sulphoaluminates and calcium hydroxide) are formed. The presence of calcium carbonate was confirmed. Increasing the amount of fly ash in pastes intensifies the process of early hydration, thereby accelerating the initial setting time and increasing the amount of water bound in hydration products. The early compressive strength is also improved. For example, the specimen containing the highest amount of fly ash showed a decrease in the initial setting time by about 20% and an increase in the 2-day compressive strength by 22%, compared to the specimen containing the lowest amount of fly ash.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cement Industry in Poland. Available: http://www.muratorplus.pl/biznes/wiesci-z-rynku/mamy-przemysl-cementowy-na-wysokim-poziomie_83604.html (accessed on 6 September 2016)

  2. EN 450-1 2012 Fly ash for concrete. Definition, specification and conformity criteria (Belgium: European Committee for Standardization)

  3. Lutze D and vom Berg W 2004 Handbook on fly ash in concrete (Dusseldorf: Verlag Bau+Technik GmbH)

    Google Scholar 

  4. Brandt M 2010 (ed) Utilization of fly ashes from circulating fluidal bed combustion in construction concrete (Warsaw: Polish Academy of Sciences)

    Google Scholar 

  5. Sheng G, Li Q and Zhai J 2012 Fuel 98 61

    Article  CAS  Google Scholar 

  6. Pacewska B, Blonkowski G and Wilińska I 2008 J. Therm. Anal. Calorim. 94 469

    Article  CAS  Google Scholar 

  7. Li X, Chen Q, Huang K, Ma B and Wu B 2012 Constr. Build. Mater. 36 182

    Article  Google Scholar 

  8. Puertas F, Martinez-Ramirez S, Alonso S and Vazquez T 2000 Cem. Concr. Res. 30 1625

    Article  CAS  Google Scholar 

  9. Bakharev T, Sanjayan J G and Cheng Y B 2003 Cem. Concr. Res. 33 1607

    Article  CAS  Google Scholar 

  10. Bakharev T, Sanjayan J G and Cheng Y B 2002 Cem. Concr. Res. 32 211

    Article  CAS  Google Scholar 

  11. Belknam F and Stark J 2009 Cem. Concr. Res. 39 644

    Article  Google Scholar 

  12. Bilim C and Atis C D 2012 Constr. Build. Mater. 28 708

    Article  Google Scholar 

  13. Derdacka-Grzymek A, Małolepszy J, Brylicki W and Deja J 1990 Polish patent PL 162716

  14. Dung N T, Chang T P, Chen C T and Yang T R 2016 Mater. Struct. 49 2009

    Article  CAS  Google Scholar 

  15. Nguyen H A, Chang T P, Shih J Y, Chen C T and Nguyen T D 2016 Constr. Build. Mater. 106 670

    Article  CAS  Google Scholar 

  16. Kledyński Z, Machowska A, Pacewska B and Wilińska I 2017 J. Therm. Anal. Calorim. 130 351

    Article  Google Scholar 

  17. Machowska A 2016 in Circular economy Z Kledyński (ed) (Warsaw: OWPW) p 136

  18. Polish patent no. 180380

  19. EN 197-1 2011 Cement—Part 1: Composition, specifications and conformity criteria for common cements (Belgium: European Committee for Standardization)

  20. EN 196-3 2016 Methods of testing cement. Determination of setting times and soundness (Belgium: European Committee for Standardization)

  21. EN 196-1 2016 Methods of testing cement. Determination of strength (Belgium: European Committee for Standardization)

  22. Poznański J 2012 Computer software for processing the data obtained from calorimeter

  23. Kurdowski W 2010 Cement and concrete chemistry (Warsaw: Polish Scientific Publisher)

    Google Scholar 

  24. Ježo L, Palou M, Kozánková J and Ifka T 2010 J. Therm. Anal. Calorim. 101 585

    Article  Google Scholar 

  25. Jeong Y, Park H, Jun Y, Jeong J H and Oh J E 2016 Cem. Concr. Compos. 72 155

    Article  CAS  Google Scholar 

  26. Shen Y, Qian J and Zhang Z 2013 Constr. Build. Mater. 40 672

    Article  Google Scholar 

  27. Sherir M A A, Hossain K M A and Lachemi M 2016 Constr. Build. Mater. 127 80

    Article  CAS  Google Scholar 

  28. Mostafa N Y and Brown P W 2005 Thermochim. Acta 435 162

    Article  CAS  Google Scholar 

  29. Hu J, Ge Z and Wang K 2014 Constr. Build. Mater. 50 657

    Article  Google Scholar 

  30. Deschner F, Winnefeld F, Lothenbach B, Seufert S, Schwesig P, Dittrich S et al 2012 Cem. Concr. Res. 42 1389

    Article  CAS  Google Scholar 

  31. Wilińska I and Pacewska B 2014 J. Therm. Anal. Calorim. 116 689

    Article  Google Scholar 

  32. Mozgawa W and Deja J 2009 J. Molec. Struct. 924–926 434

    Article  Google Scholar 

  33. Heikal M, Nassar M Y, El-Sayed G and Ibrahim S M 2014 Constr. Build. Mater. 69 60

    Article  CAS  Google Scholar 

  34. Criado M, Fernández-Jiménez A and Palomo A 2007 Micropor. Mesopor. Mater. 106 180

    Article  CAS  Google Scholar 

  35. Mozgawa W, Krol M, Dyczek J and Deja J 2014 Spectrochim. Acta Part A: Mol. Biomol. Spect. 132 889

    Article  CAS  Google Scholar 

  36. Ylmén R, Jäglid U, Steenari B M and Panas I 2009 Cem. Concr. Res. 39 433

    Article  Google Scholar 

  37. Pacewska B, Wilińska I, Bukowska M and Nocuń-Wczelik W 2002 Cem. Concr. Res. 32 1823

    Article  CAS  Google Scholar 

  38. Pacewska B and Wilińska I 2013 Proc. Eng. 57 53

    Article  CAS  Google Scholar 

  39. Chaipanich A and Nochaiya T 2010 J. Therm. Anal. Calorim. 99 487

    Article  CAS  Google Scholar 

  40. Neves Jr A, Filho R D T and Fairbairn E M R 2012 J. Therm. Anal. Calorim. 108 725

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Machowska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machowska, A., Kledyński, Z., Wilińska, I. et al. A study of the early hydration processes and properties of fly ash-slag binders. Bull Mater Sci 42, 213 (2019). https://doi.org/10.1007/s12034-019-1886-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1886-1

Keywords

Navigation