Skip to main content

Advertisement

Log in

Cementitious properties and microstructure of an innovative slag eco-binder

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Circulating fluidized bed combustion fly ash was used to activate the hydration of ground granulated blast furnace slag to produce non-cement SCA eco-binder without Portland cement (OPC). The engineering properties of SCA paste and mortar with air or water curing were evaluated. The microstructure and hydration products of the SCA binder were investigated by scanning electron microscope, and X-ray diffraction. The hydration products of SCA were ettringite (AFt), calcium silicate hydrate (C–S–H) and calcium aluminate silicate hydrate (C–A–S–H) so that the SCA paste had proper setting times, dense microstructure and high strength. The compressive strengths of SCA pastes and mortars reached up to 70 MPa at 28 days and even higher at longer ages. The early expansion of SCA paste and mortar due to the AFt formation compensated for their drying shrinkage to lead to a very low ultimate shrinkage. The SCA binder is a promising alternative to OPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. ASTM (2007) Standard test methods for time of setting of hydraulic cement by vicat needle. ASTM Committee C01, West Conshohocken

  2. ASTM (2008) Standard test method for measuring the drying shrinkage of masonry mortar. ASTM Committee C12, West Conshohocken

  3. Barcelo L, Kline J, Walenta G, Gartner E (2014) Cement and carbon emissions. Mater Struct 47:1055–1065

  4. Benhelal E, Zahedi G, Shamsaei E, Bahadori A (2013) Global strategies and potentials to curb CO2 emissions in cement industry. J Clean Prod 51:142–161. doi:10.1016/j.jclepro.2012.10.049

    Article  Google Scholar 

  5. Buchwald A, Tatarin R, Stephan D (2009) Reaction progress of alkaline-activated metakaolin-ground granulated blast furnace slag blends. J Mater Sci 44:5609–5617. doi:10.1007/s10853-009-3790-3

    Article  Google Scholar 

  6. C-1 AC (1999) Standard test method for compressive strength of hydraulic cement mortars [using 2-in. or (50-mm) cube specimens]. ASTM International, West Conshohocken, PA

  7. Camarini G, De Milito JA (2011) Gypsum hemihydrate–cement blends to improve renderings durability. Constr Build Mater 25:4121–4125. doi:10.1016/j.conbuildmat.2011.04.048

    Article  Google Scholar 

  8. Dongxu L, Xuequan W, Jinlin S, Yujiang W (2000) The influence of compound admixtures on the properties of high-content slag cement. Cem Concr Res 30:45–50. doi:10.1016/S0008-8846(99)00210-0

    Article  Google Scholar 

  9. Ghafoori N, Mora CAG (1998) Compacted non-cement concrete utilizing fluidized bed and pulverized coal combustion by-products. ACI Mater J 95:582–592

    Google Scholar 

  10. Glinicki M, Zielinski M (2008) Air void system in concrete containing circulating fluidized bed combustion fly ash. Mater Struct 41:681–687. doi:10.1617/s11527-007-9273-6

  11. Glinicki M, Zielinski M (2009) Frost salt scaling resistance of concrete containing CFBC fly ash. Mater Struct 42:993–1002. doi:10.1617/s11527-008-9438-y

    Article  Google Scholar 

  12. Güneyisi E, Gesoğlu M (2008) A study on durability properties of high-performance concretes incorporating high replacement levels of slag. Mater Struct 41:479–493. doi:10.1617/s11527-007-9260-y

  13. Güneyisi E, Gesoǧlu M, Özturan T, Mermerdaş K (2012) Microstructural properties and pozzolanic activity of calcined kaolins as supplementary cementing materials. Can J Civ Eng 39:1274–1284. doi:10.1139/cjce-2011-0586

    Article  Google Scholar 

  14. Guo Li X, Bin Chen Q, Guo Ma B, Huang J, Wei Jian S, Wu B (2012) Utilization of modified CFBC desulfurization ash as an admixture in blended cements: physico-mechanical and hydration characteristics. Fuel 102:674–681

  15. Guo Li X, Bin Chen Q, Zhong Huang K, Guo Ma B, Wu B (2012) Cementitious properties and hydration mechanism of circulating fluidized bed combustion (CFBC) desulfurization ashes. Constr Build Mater 36:182–187

    Article  Google Scholar 

  16. Hannesson G, Kuder K, Shogren R, Lehman D (2012) The influence of high volume of fly ash and slag on the compressive strength of self-consolidating concrete. Constr Build Mater 30:161–168. doi:10.1016/j.conbuildmat.2011.11.046

    Article  Google Scholar 

  17. Iribarne J, Iribarne A, Blondin J, Anthony EJ (2001) Hydration of combustion ashes—a chemical and physical study. Fuel 80:773–784. doi:10.1016/S0016-2361(00)00158-7

    Article  Google Scholar 

  18. Juenger MCG, Winnefeld F, Provis JL, Ideker JH (2011) Advances in alternative cementitious binders. Cem Concr Res 41:1232–1243. doi:10.1016/j.cemconres.2010.11.012

    Article  Google Scholar 

  19. Odler I, Colán-Subauste J (1999) Investigations on cement expansion associated with ettringite formation. Cem Concr Res 29:731–735. doi:10.1016/S0008-8846(99)00048-4

    Article  Google Scholar 

  20. Pacheco-Torgal F, Abdollahnejad Z, Camões AF, Jamshidi M, Ding Y (2012) Durability of alkali-activated binders: a clear advantage over Portland cement or an unproven issue? Constr Build Mater 30:400–405. doi:10.1016/j.conbuildmat.2011.12.017

    Article  Google Scholar 

  21. Palacios M, Puertas F (2011) Effectiveness of mixing time on hardened properties of waterglass-activated slag pastes and mortars. ACI Mater J 108:73–78

    Google Scholar 

  22. Rust D, Rathbone R, Mahboub K, Robl T (2012) Formulating low-energy cement products. J Mater Civ Eng 24:1125–1131. doi:10.1061/(ASCE)MT.1943-5533.0000456

    Article  Google Scholar 

  23. Schneider M, Romer M, Tschudin M, Bolio H (2011) Sustainable cement production—present and future. Cem Concr Res 41:642–650. doi:10.1016/j.cemconres.2011.03.019

    Article  Google Scholar 

  24. Sheng G, Li Q, Zhai J (2012) Investigation on the hydration of CFBC fly ash. Fuel 98:61–66

    Article  Google Scholar 

  25. Sheng G, Li Q, Zhai J, Li F (2007) Self-cementitious properties of fly ashes from CFBC boilers co-firing coal and high-sulphur petroleum coke. Cem Concr Res 37:871–876

    Article  Google Scholar 

  26. Shon C-S, Mukhopadhyay AK, Saylak D, Zollinger DG, Mejeoumov GG (2010) Potential use of stockpiled circulating fluidized bed combustion ashes in controlled low strength material (CLSM) mixture. Constr Build Mater 24:839–847. doi:10.1016/j.conbuildmat.2009.10.022

    Article  Google Scholar 

  27. Singh NB, Sarvahi R, Singh NP (1992) Effect of superplasticizers on the hydration of cement. Cem Concr Res 22:725–735. doi:10.1016/0008-8846(92)90095-D

    Article  Google Scholar 

  28. Taylor HFW (1986) Proposed structure for calcium silicate hydrate gel. J Am Ceram Soc 69:464–467. doi:10.1111/j.1151-2916.1986.tb07446.x

    Article  Google Scholar 

  29. Taylor HFW (1993) Nanostructure of C–S–H: current status. Adv Cem Based Mater 1:38–46. doi:10.1016/1065-7355(93)90006-A

  30. Turner LK, Collins FG (2013) Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Constr Build Mater 43:125–130. doi:10.1016/j.conbuildmat.2013.01.023

    Article  Google Scholar 

  31. Van Deventer JSJ, Provis JL, Duxson P (2012) Technical and commercial progress in the adoption of geopolymer cement. Miner Eng 29:89–104. doi:10.1016/j.mineng.2011.09.009

  32. Walker R, Pavía S (2011) Physical properties and reactivity of pozzolans, and their influence on the properties of lime–pozzolan pastes. Mater Struct 44:1139–1150. doi:10.1617/s11527-010-9689-2

    Article  Google Scholar 

  33. Wang J, Wu Y, Anthony EJ (2005) The hydration behavior of partially sulfated fluidized bed combustor sorbent. Ind Eng Chem Res 44:8199–8204. doi:10.1021/ie0507124

    Article  Google Scholar 

  34. Xu L, Wang P, Zhang G (2012) Formation of ettringite in Portland cement/calcium aluminate cement/calcium sulfate ternary system hydrates at lower temperatures. Constr Build Mater 31:347–352. doi:10.1016/j.conbuildmat.2011.12.078

    Article  MathSciNet  Google Scholar 

  35. Yang K-H, Song J-K, Song K-I (2013) Assessment of CO2 reduction of alkali-activated concrete J Clean. Prod 39:265–272. doi:10.1016/j.jclepro.2012.08.001

    Google Scholar 

  36. Zhang Y, Sun W, Li Z (2008) Synthesis and microstructural characterization of fully reacted potassium-poly(sialate-siloxo) geopolymeric cement matrix. ACI Mater J 105:156–165

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of this work by National Taiwan University of Science and Technology (Taiwan Tech) through the scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Tien Dung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dung, N.T., Chang, TP., Chen, CT. et al. Cementitious properties and microstructure of an innovative slag eco-binder. Mater Struct 49, 2009–2024 (2016). https://doi.org/10.1617/s11527-015-0630-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-015-0630-6

Keywords

Navigation