Skip to main content
Log in

On the structural and electrical properties of metal–ferroelectric–high k dielectric–silicon structure for non-volatile memory applications

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this article, we report the structural and electrical properties of metal–ferroelectric–high k dielectric–silicon (MFeIS) gate stack for non-volatile memory applications. Thin film of sputtered \(\hbox {SrBi}_{2}\hbox {Nb}_{2}\hbox {O}_{9}\) (SBN) was used as ferroelectric material on 5–15 nm thick high-k dielectric (\(\hbox {Al}_{2}\hbox {O}_{3}\)) buffer layer deposited using plasma-enhanced atomic layer deposition (PEALD). The effect of annealing on structural and electrical properties of SBN and \(\hbox {Al}_{2}\hbox {O}_{3}\) films was investigated in the temperature range of 350–\(1000^{{\circ }}\hbox {C}\). X-ray diffraction results of the SBN and \(\hbox {Al}_{2}\hbox {O}_{3}\) show multiple phase changes with an increase in the annealing temperature. Multiple angle ellipsometry data show the change in the refractive index (n) of SBN film from 2.0941 to 2.1804 for non-annealed to samples annealed at \(600^{{\circ }}\hbox {C}\). For \(\hbox {Al}_{2}\hbox {O}_{3}\) film, \(n < 1.7\) in the case of PEALD and \(n > 1.7\) for sputtered film was observed. The leakage current density in MFeIS structure was observed to two orders of magnitude lower than metal/ferroelectric/silicon (MFeS) structures. Capacitance–voltage (C–V) characteristics for the voltage sweep of −10 to 10 V in dual mode show the maximum memory window of 1.977 V in MFeS structure, 2.88 V with sputtered \(\hbox {Al}_{2}\hbox {O}_{3}\) and 2.957 V with PEALD \(\hbox {Al}_{2}\hbox {O}_{3}\) in the MFeIS structures at the annealing temperature of \(500^{{\circ }}\hbox {C}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Scott J F and Paz de Araujo C A 1989 Science  246 1400

    Article  Google Scholar 

  2. Sinharoy S, Buhay H, Lampe D and Francombe M 1992 J. Vac. Sci. Technol. A  10 1554

    Article  Google Scholar 

  3. Mikolajick T, Dehm C, Hartner W, Kasko I, Kastner M J, Nagel N et al 2001 Microelectron. Reliab.  41 947

    Article  Google Scholar 

  4. Arimoto Y and Ishiwara H 2004 MRS Bull.  29 823

    Article  Google Scholar 

  5. Auciello O 1997 Integr. Ferroelectr.  15 211

    Article  Google Scholar 

  6. Scott J F 1995 Phys. World  8 46

    Article  Google Scholar 

  7. Chon U, Jang H M, Kim M G and Chang C H 2002 Phys. Rev. Lett.  89 087601

    Article  Google Scholar 

  8. Roy A, Dhar A and Ray S K 2008 J. Phys. D: Appl. Phys.  41 095408

    Article  Google Scholar 

  9. Kumar A, Rao A, Goswami M and Singh B R 2013 Mater. Sci. Semicond. Process.  16 1603

    Article  Google Scholar 

  10. Verma R M, Rao A and Singh B R 2014 Appl. Phys. Lett.  104 092907

    Article  Google Scholar 

  11. Paz De Araujo C A, McMillan L D, Melnick B M, Cuchiaro J D and Scott J F 1990 Ferroelectrics 104 241

  12. Maas R, Koch M, Harris N R, White N M and Evans A G R 1997 Mater. Lett.  31 109

    Article  Google Scholar 

  13. Nakamura T, Nakao Y, Kamisawa A and Takasu H 1994 Appl. Phys. Lett.  65 1522

    Article  Google Scholar 

  14. Scott J F 1997 in Thin film ferroelectric materials and devices (ed.) R Ramesh (US: Springer) p 115

  15. de Araujo C A P, Cuchiaro J D, McMillan L D, Scott M C and Scott J F 1995 Nature  374 627

    Article  Google Scholar 

  16. Zhao C, Zhu Q, Wu D and Li A 2009 Phys. D: Appl. Phys.  42 185412

    Article  Google Scholar 

  17. Watanabe K, Tanaka M, Sumitomo E, Katori K, Yagi H and Scott J F 1998 Appl. Phys. Lett.  73 126

    Article  Google Scholar 

  18. Sakamoto W, Yogo T, Kikuta K, Ogiso K J, Kawase A and Hirano S I 1996 J. Am. Ceram. Soc.  79 2283

    Article  Google Scholar 

  19. Chen C J, Xu Y, Xu R and Mackenzie J D 1991 J. Appl. Phys.  69 1763

    Article  Google Scholar 

  20. Yang P, Carroll D L, Ballato J and Schwartz R W 2003 J. Appl. Phys.  93 9226

    Article  Google Scholar 

  21. Lee M and Feigelson R S 1997 J. Cryst. Growth  180 220

    Article  Google Scholar 

  22. Singh R, Luthra V, Rawat R S and Tandon R P 2015 Ceram. Int.  41 4468

    Article  Google Scholar 

  23. Cho J A, Park S E, Song T K, Kim M H, Lee H S and Kim S S 2004 J. Electroceram.  13 515

    Article  Google Scholar 

  24. Alexe M 1998 Appl. Phys. Lett.  72 2283

    Article  Google Scholar 

  25. Tokumitsu E, Itani K, Moon B K and Ishiwara H 1995 Jpn. J. Appl. Phys.  34 5202

    Article  Google Scholar 

  26. Yoon S M and Ishiwara H 2001 IEEE Trans. Electron Devices  48 2002

    Article  Google Scholar 

  27. Sugiyama H, Nakaiso T, Adachi Y, Noda M and Okuyama M 2000 Jpn. J. Appl. Phys.  39 2131

    Article  Google Scholar 

  28. Shin D S, Lee H N, Kim Y T, Choi I H and Kim B H 1998 Jpn. J. Appl. Phys.  37 4373

    Article  Google Scholar 

  29. Kang S K and Ishiwara H 2002 Jpn. J. Appl. Phys.  41 2094

    Article  Google Scholar 

  30. Hubbard K J and Schlom D G 1996 J. Mater. Res.  11 2757

    Article  Google Scholar 

  31. Larsen P K, Dormans G J M, Taylor D J and Van Veldhoven P J 1994 J. Appl. Phys.  76 2405

    Article  Google Scholar 

  32. Mihara T, Yoshimori H, Watanabe H and de Araujo C A P 1995 Jpn. J. Appl. Phys.  34 5233

    Article  Google Scholar 

  33. Jeon Y, Chung J and No K 2000 J. Electroceram.  4 195

    Article  Google Scholar 

  34. Wilk G D, Wallace R M and Anthony J M 2001 J. Appl. Phys.  89 5243

    Article  Google Scholar 

  35. Li Z J and Huang K L 2007 J. Braz. Chem. Soc.  18 406

    Article  Google Scholar 

  36. He G and Sun Z 2012 High-k gate dielectrics for CMOS technology (Weinheim, Germany: Wiley-VCH) p 476

  37. Lim M and Kalkur T S 1997 Integr. Ferroelectr.  14 247

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere thanks to Prof. P Nagabhushan, Director, for his constant support and encouragement. Thanks is also due to Mr Upendra Kashniyal, Technical staff, for his assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Jha, R.K., Singh, R.K. et al. On the structural and electrical properties of metal–ferroelectric–high k dielectric–silicon structure for non-volatile memory applications. Bull Mater Sci 41, 101 (2018). https://doi.org/10.1007/s12034-018-1624-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1624-0

Keywords

Navigation