Skip to main content
Log in

Spray pyrolytically grown NiAlOx cermets for solar thermal selective absorbers: spectral properties and thermal stability

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

After deposition of NiAlOx thin films on stainless-steel substrates by the spray pyrolysis technique, various properties of the films were investigated using Fourier transform infrared spectroscopy, UV–visible reflectance spectrophotometry, energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Optical quantities were determined using reflectance spectra in the relevant spectrum region. At first the optimal substrate temperature was selected and then different nickel to aluminium ratios were examined to find the efficient solar absorber. The SEM revealed changes in morphology due to different molar ratios. The XRD of the selected sample showed a mixture of nickel and nickel oxide phases with the strong presence of substrate peaks and without the presence of alumina phase while in the EDX test the peaks corresponding to O, Al and Ni appeared. Long-term thermal stability study was performed by means of performance criterion concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Nuru Z Y, Arendse C J, Muller T F, Khamlich S and Maaza M 2014 Sol. Energy Mater. Sol. Cells 120 473

    Article  Google Scholar 

  2. Boström T, Valizadeh S, Lu J, Jensen J, Westin G and Wäckelgård E 2011 J. Non-Cryst. Solids 357 1370

    Article  Google Scholar 

  3. Kennedy C E 2008 Progress to develop an advanced solar-selective coating. In: 14th Biennial CSP Solar PACES (Solar Power and Chemical Energy Systems) Symposium 4–7 March 2008, Las Vegas, Nevada

  4. Arancibia-Bulnes C A, Estrada C A and Ruiz-Suarez J C 2000 J. Phys. D: Appl. Phys. 33 2489

    Article  Google Scholar 

  5. Cao F, Mc Enaney K, Chen G and Ren Z 2014 Energy Environ. Sci. 7 1615

    Article  Google Scholar 

  6. Gaouyat L, He Z, Colomer J -F, Lambin P., Mirabella F, Schryvers D and Deparis O 2014 Sol. Energy Mater. Sol. Cells 122 303

    Article  Google Scholar 

  7. Reza Nejati M, Fathollahi V and Khalaji Asadi M 2005 Solar Energy 78 235

    Article  Google Scholar 

  8. Wu L, Gao J, Liu Z, Liang L, Xia F and Cao H 2013 Sol. Energy Mater. Sol. Cells 114 186

    Article  Google Scholar 

  9. Sathiaraj T S, Thangaraj R, Alsharbaty H and Agnihotri O P 1991 Thin Solid Films 195 33

    Article  Google Scholar 

  10. Sathiaraj T S, Thangaraj R, Alsharbaty H, Bhatnagar M and Agnihotri O P 1990 Thin Solid Films 190 241

    Article  Google Scholar 

  11. Davoine F, Galione P A, Ramos-Barrado J R, Leinen D, Martín F, Dalchiele E A and Marotti R E 2013 Solar Energy 91 316

    Article  Google Scholar 

  12. Cuevas A, Martínez L, Romero R, Dalchiele E A, Marotti R, Leinen D, Ramos-Barrado J R and Martin F 2014 Sol. Energy Mater. Sol. Cells 130 380

    Article  Google Scholar 

  13. Li Z, Zhao J and Ren L 2012 Sol. Energy Mater. Sol. Cells 105 90

    Article  Google Scholar 

  14. Saxena V, Rani R U and Sharma A K 2006 Surf. Coat. Technol. 201 855

    Article  Google Scholar 

  15. Shashikala A R, Sharma A K and Bhandari D R 2007 Sol. Energy Mater. Sol. Cells 91 629

    Article  Google Scholar 

  16. Cindrella L 2007 Sol. Energy Mater. Sol. Cells 91 1898

    Article  Google Scholar 

  17. Karthick Kumar S, Suresh S, Murugesan S and Raj S P 2013 Solar Energy 94 299

    Article  Google Scholar 

  18. Yin Y, McKenzie D R and McFall W D 1996 Sol. Energy Mater. Sol. Cells 44 69

    Article  Google Scholar 

  19. Marquez A, Blanco G, de Rapp M E F, Lamas D G and Tarulla R 2004 Surf. Coat. Technol. 187 154

    Article  Google Scholar 

  20. Ienei E, Isac L, Cazan C and Duta A 2010 Solid State Sci. 12 1894

    Article  Google Scholar 

  21. Isac L, Duta A, Purghel E, Chitanu G C, Mitrea S and Pelin I 2008 Phys. Status Solidi A 205 2413

    Article  Google Scholar 

  22. Craighead H G and Buhrman R A 1977 Appl. Phys. Lett. 31 423

    Article  Google Scholar 

  23. Granqvist C G, Andersson A and Hunderi O 1979 Appl. Phys. Lett. 35 268

    Article  Google Scholar 

  24. Sathiaraj T S, Thangaraj R and Agnihotri O P 1989 Sol. Energy Mater. Sol. Cells 18 343

    Article  Google Scholar 

  25. Du X, Wang C, Wang T, Zhou L, Chen B and Ru N 2008 Thin Solid Films 516 3971

    Article  Google Scholar 

  26. Cheng J, Wang C, Wang W, Du X, Liu Y, Xue Y, Wang T and Chen B 2013 Sol. Energy Mater. Sol. Cells 109 204

    Article  Google Scholar 

  27. Nuru Z Y, Arendse C J, Nemutudi R, Nemraoui O and Maaza M 2012 Physica B: Condensed Matter 407 1634

    Article  Google Scholar 

  28. Yin Y, Pan Y, Hang L X, McKenzie D R and Bilek M M M 2009 Thin Solid Films 517 1601

    Article  Google Scholar 

  29. Barshilia H C, Kumar P, Rajam K S and Biswas A 2011 Sol. Energy Mater. Sol. Cells 95 1707

    Article  Google Scholar 

  30. Xue Y, Wang C, Wang W, Liu Y, Wu Y, Ning Y and Sun Y 2013 Solar Energy 96 113

    Article  Google Scholar 

  31. Antonaia A, Castaldo A, Addonizio M L and Esposito S 2010 Sol. Energy Mater. Sol. Cells 94 1604

    Article  Google Scholar 

  32. Sella C, Kaba A, Berthier S and Lafait J 1987 Sol. Energy Mater. Sol. Cells 16 143

    Article  Google Scholar 

  33. Bagheri Khatibani A and Rozati S M 2014 Mater. Sci. Semicond. Process. 18 80

    Article  Google Scholar 

  34. Setién-Fernández I, Echániz T, González-Fernández L, Pérez-Sáez R B, Céspedes E, Sánchez-García J A, Álvarez-Fraga L, Escobar Galindo R, Albella J M, Prieto C and Tello M J 2013 Sol. Energy Mater. Sol. Cells 117 390

    Article  Google Scholar 

  35. Bagheri Khatibani A and Rozati S M 2013 J. Non-Cryst. Solids 363 121

    Article  Google Scholar 

  36. Ienei E, Isac L and Duta A 2010 Rev. Roum. Chim. 55 161

    Google Scholar 

  37. Avila A G, Barrera E C, Huerta L A and Muhl S 2004 Sol. Energy Mater. Sol. Cells 82 269

    Article  Google Scholar 

  38. Gassmann P, Franchy R and Ibach H 1994 Surf. Sci. 319 95

    Article  Google Scholar 

  39. Yamada-Takamura Y, Koch F, Maier H and Bolt H 2001 Surf. Coat. Technol. 142–144 260

    Article  Google Scholar 

  40. Chryssou C E and Pitt C W 1997 Appl. Phys. A 65 469

    Article  Google Scholar 

  41. Bagheri Khatibani A and Rozati S M 2015 Bull. Mater. Sci. 38 319

    Article  Google Scholar 

  42. Xinkang D, Cong W, Tianmin W, Long Z, Buliang C and Ning R 2008 Thin Solid Films 516 3971

    Article  Google Scholar 

  43. Deokate R J, Pawar S M, Moholkar A V, Sawant V S, Pawar C A, Bhosale C H and Rajpure K Y 2008 Appl. Surf. Sci. 254 2187

    Article  Google Scholar 

  44. Farooq M and Hutchins M G 2002 Sol. Energy Mater. Sol. Cells 71 73

    Article  Google Scholar 

  45. Oe K, Toyoshima Y and Nagai H 1976 J. Non-Cryst. Solids 20 405

    Article  Google Scholar 

  46. Farooq M and Lee Z H 2003 Renew. Energy 28 1421

    Article  Google Scholar 

  47. Zhang Q C and Mills D R 1992 J. Appl. Phys. 72 3013

    Article  Google Scholar 

  48. Kennedy C E 2002 Review of mid- to high-temperature solar selective absorber materials, July 2002, NREL/TP-520-31267

  49. Carlsson B, Moller K, Kohl M, Frei U and Brunold S 2000 Sol. Energy Mater. Sol. Cells 61 255

    Article  Google Scholar 

  50. Bogaerts W F and Lampert C M 1983 J. Mater. Sci. 18 2847

    Article  Google Scholar 

  51. Kumar S N, Malhotra L K and Chopra K L 1983 Sol. Energy Mater. 7 439

    Article  Google Scholar 

  52. Tesfamichael T and Roos A 1998 Sol. Energy Mater. Sol. Cells 54 213

    Article  Google Scholar 

  53. Andersson A, Hunderi O and Granqvist C G 1980 J. Appl. Phys. 51 754

    Article  Google Scholar 

  54. Varol H S and Hinsch A 1996 Sol. Energy Mater. Sol. Cells 40 273

    Article  Google Scholar 

  55. Suzer S, Kadirgan F, Sohmen H M, Wetherilt A J and Ture E 1998 Sol. Energy Mater. Sol. Cells 52 55

    Article  Google Scholar 

Download references

Acknowledgement

This project was supported by the Islamic Azad University, Lahijan Branch, Iran and performed in the Physics Department of the University of Guilan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A BAGHERI KHATIBANI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KHATIBANI, A.B., ROZATI, S.M. Spray pyrolytically grown NiAlOx cermets for solar thermal selective absorbers: spectral properties and thermal stability. Bull Mater Sci 39, 97–107 (2016). https://doi.org/10.1007/s12034-015-1146-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-1146-y

Keywords

Navigation