Skip to main content
Log in

Structural and electronic properties of non-magnetic intermetallic YAuX (X = Ge and Si) in hexagonal and cubic phases

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The structural and electronic properties of non-magnetic intermetallic YAuX (X = Ge and Si) crystallized in hexagonal phase have been investigated using the full potential linearized augmented-plane wave (FP-LAPW) method based on the density functional theory (DFT), within the generalized gradient approximation (GGA). The calculated lattice parameters were in good agreement with experiment. Also, the structural and electronic properties of the non-magnetic half-Heusler YAuPb compound including the artificial YAuX (X = Ge and Si) calculated in cubic phase were determined. It was found that the half-Heusler YAuPb compound presented metallic character. The results showed that YAuGe in cubic phase is a semiconductor whereas the cubic YAuSi is an isolator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Hoffmann R D and Pöttgen R 2001 Z. Kristallogr. 216 127

    Google Scholar 

  2. Pöttgen R and Johrendt D 2000 Chem. Mater. 12 875

    Article  Google Scholar 

  3. Dhar S K, Nabudripad N and Vijayaraghavan R 1988 J. Phys. F: Met. Phys. 18 L41

    Article  Google Scholar 

  4. Karla I, Pierre J and Ouladdiaf B 1998 Physica B 253 215

    Article  Google Scholar 

  5. Fuji H, Uwatoko Y, Akayama M, Satoh K, Maeno Y, Fujita T, Sakurai J, Kanimura H and Okamoto T 1987 Jpn. J. Appl. Phys. (Suppl.) 26 549

    Article  Google Scholar 

  6. Slebarski A, Glogowski W, Jezierski A, Czopnik A and Zygmunt A 2004 Phys. Rev. B 70 184429

    Article  Google Scholar 

  7. Adroja D T, Malik S K, Padalia S N, Walia R and Vijayaraghavan 1990, Phys. Rev. B 42 2700

    Article  Google Scholar 

  8. Canepa F and Cirafici S 1996 J. Alloys Compd. 232 71

    Article  Google Scholar 

  9. Cirafici S, Palenzona and Canepa 1985, J. Less-Common Met. 107 179

    Article  Google Scholar 

  10. Felser C, Cramm S, Johrendt D, Mewis A, Jepsen O, Hohlneicher G, Eberhardt W and Andersen O K 1997 , Europhys. Lett. 40 85

    Article  Google Scholar 

  11. Ksenofontov V, Kandpal Hem C, Ensling J, Waldeck M, Johrendt D, Mewis A, Gütlich P and Felser C 2006 Europhys. Lett. 74 672

    Article  Google Scholar 

  12. Takabatake T, Nakazawa Y and Ishikawa 1987, Jpn. J. Appl. Phys. (Suppl.) 26 547

    Article  Google Scholar 

  13. Pierre J, Karla I and Kaczmarska K 1999 Physica B 259 845

    Article  Google Scholar 

  14. Malik S K, Takeya H and Gschneider K A 1993 J. Phys. Rev. B 48 9858

    Article  Google Scholar 

  15. Baran S, Leciejewicz J, Hofmann P and Szytula A 1998 J. Alloys Compd. 275 541

    Article  Google Scholar 

  16. Baran S, Leciejewicz J, Stüsser M, Szytula A and Tomkowicz Z 1997 Solid State Commun. 101 631

    Article  Google Scholar 

  17. Baran S, Leciejewicz J, Stüsser M, Szytula A, Zygmunt A and Ivanov V 1996 J. Phys.: Condens. Matter. 8 8397

    Google Scholar 

  18. Fornasini M L, Iandelli A and Pani M 1992 J. Alloys Compd. 187 243

    Article  Google Scholar 

  19. Schnelle W, Pöttgen R, Kremer R KGmelin E and Jepsen O 1997 J. Phys.: Condens. Matter 9 1435

    Google Scholar 

  20. Lin H, Andrew Wray L, Xia Y, Xu S, Jia S, Cava R J, Bansil A and Hasan M Z 2010 Nat. Mater. 9 546

    Article  Google Scholar 

  21. Zhang H, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438

    Article  Google Scholar 

  22. Qi X L and Zhang S C 2010 Phys. Today 63 33

    Article  Google Scholar 

  23. Moore J E 2010 Nature 464 194

    Article  Google Scholar 

  24. Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045

    Article  Google Scholar 

  25. Hohenberg P and Kohn W 1964 Phys. Rev. B 64 136

    Google Scholar 

  26. Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2K, an augmented-plane-wave + local orbitals program for calculating crystal properties (Wien, Austria: Karlheinz Schwarz, Techn.) ISBN 3-9501031-1-2

  27. Perdew J P, Burke S and Ernwerhof M 1996 Phys. Rev. Lett. 77 3865

    Article  Google Scholar 

  28. Rath J and Freeman A J 1975 Phys. Rev. B 11 2109

    Article  Google Scholar 

  29. Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 5390

    Google Scholar 

  30. Pöttgen R, Borrmann H, Felser C, Jepsen O, Henn R, Kremer R and Simon K 1996 J. Alloys Compd. 235 170

    Article  Google Scholar 

  31. Landelli A 1983 J. Less-Common. Met. 90 123

    Google Scholar 

  32. Mungli A, Albinati A and Hewat A W 1984 J. Less-Common. Met. 97 L1

    Article  Google Scholar 

  33. Marazza R, Rossi D and Ferro R 1988 J. Less-Common. Met. 138 189

    Article  Google Scholar 

  34. Al-Sawai W, Lin H, Markiewicz R S, Wray L A, Xia Y, Xu S Y, Hasan M Z and Bansil A 2010 Phys. Rev. B 82 125208

    Article  Google Scholar 

  35. Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S MÉÇABIH.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LEKHAL, A., BENKHELIFA, F.Z., MÉÇABIH, S. et al. Structural and electronic properties of non-magnetic intermetallic YAuX (X = Ge and Si) in hexagonal and cubic phases. Bull Mater Sci 39, 195–200 (2016). https://doi.org/10.1007/s12034-015-1124-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-1124-4

Keywords

Navigation