Skip to main content
Log in

Synthesis and characterization of stable aqueous dispersions of graphene

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A stable aqueous dispersion (5 mg ml−1) of graphene was synthesized by a simple protocol based on three-step reduction of graphene oxide (GO) dispersion synthesized using the modified version of Hummers and Offeman method. Reduction of GO was carried out using sodium borohydride, hydrazine hydrate and dimethyl hydrazine as reducing agents. The chemically synthesized graphene was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–visible absorption spectroscopy, Fourier transform infrared (FTIR) and Raman spectroscopy, thermogravimetric analysis (TGA), optical microscopy. The stability of aqueous dispersions of graphene was confirmed through zeta potential measurements and the negative zeta potentials of 55–60 mV were obtained indicating the high stability of aqueous graphene dispersions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Kroto H W, Heath J R, O’Brien S C, Curl R F and Smalley R E 1985 Nature 318 162

    Article  Google Scholar 

  2. Iijima S 1991 Nature 354 56

    Article  Google Scholar 

  3. Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S, Grigorieva I V and Firsov A A 2004 Science 306 666

    Article  Google Scholar 

  4. Geim A K and Novoselov K S 2007 Nat. Mater. 6 183

    Article  Google Scholar 

  5. Rao C N R, Sood A K, Subrahmanyam K S and Govindaraj A 2009 Angew. Chem. Int. Ed. 48 7752

    Article  Google Scholar 

  6. Tung V C, Allen M J, Yang Y and Kaner R B 2009 Nat. Nanotechnol. 4 25

    Article  Google Scholar 

  7. Choucair M, Thordarson P and Stride J A 2009 Nat. Nanotechnol. 4 30

    Article  Google Scholar 

  8. Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N and de Heer W A 2006 Science 312 1191

    Article  Google Scholar 

  9. Sutter P W, Flege J -I and Sutter E A 2008 Nat. Mater. 7 406

    Article  Google Scholar 

  10. Yang X, Dou X, Rouhanipour A, Zhi L, Rader H J and Mullen K 2008 J. Am. Chem. Soc. 130 4216

    Article  Google Scholar 

  11. Park S and Ruoff R S 2009 Nat. Nanotechnol. 4 217

    Article  Google Scholar 

  12. Ruoff R S 2008 Nat. Nanotechnol. 3 10

    Article  Google Scholar 

  13. Hummers W S and Offeman R E 1958 J. Am. Chem. Soc. 80 1339

    Article  Google Scholar 

  14. Kovtyukhova N I, Ollivier P J, Martin B R, Mallouk T E, Chizhik S A, Buzaneva E V and Gorchinskiy A D 1999 Chem. Mater. 11 771

    Article  Google Scholar 

  15. Thakur S and Karak N 2012 Carbon 50 5331

    Article  Google Scholar 

  16. Xu Y X, Bai H, Lu G W, Li C and Shi G Q 2008 J. Am. Chem. Soc. 130 5856

    Article  Google Scholar 

  17. Stankovich S, Piner R D, Nguyen S T and Ruoff R S 2006 Carbon 44 3342

    Article  Google Scholar 

  18. Colthup N B, Daly L H and Wiberley S E 1. Introduction to infrared and Raman spectroscopy (London: Academic Press) 3rd ed

  19. Kudin K N, Ozbas B, Schniepp H C, Prud’homme R K, Aksay I A and Car R 2008 Nano Lett. 8 36

    Article  Google Scholar 

  20. Ferrari A C and Basko D M 2013 Nat. Nanotechnol. 8 235

    Article  Google Scholar 

  21. Ferrari A C et al 2006, Phys. Rev. Lett. 97 187401

    Article  Google Scholar 

  22. Nemanich R J, Lucovsky G and Solin S A 1977 Solid State Commun. 23 117

    Article  Google Scholar 

  23. Vidano R P, Fishbach D B, Willis L J and Loehr T M 1981 Solid State Commun. 39 341

    Article  Google Scholar 

  24. Piscanec S, Lazzeri M, Mauri F, Ferrari A C and Robertson J 2004 Phys. Rev. Lett. 93 185503

    Article  Google Scholar 

  25. Das A, Chakraborty B and Sood A K 2008 Bull. Mater. Sci. 31 579

    Article  Google Scholar 

  26. Lerf A, He H, Forster M and Klinowski J 1998 J. Phys. Chem. B 102 4477

    Article  Google Scholar 

  27. Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T and Ruoff R S 2007 Carbon 45 1558

    Article  Google Scholar 

  28. Li D, Muller M B, Gilje S, Kaner R B and Wallace G G 2008 Nat. Nano 3 101

    Article  Google Scholar 

  29. Ankamwar B and Surti F 2012 Chem. Sci. Trans. 1 500

    Article  Google Scholar 

  30. Si Y and Samulski E T 2008 Nano Lett. 8 1679

    Article  Google Scholar 

Download references

Acknowledgements

UKS would like to acknowledge financial support from the projects funded by the UGC, New Delhi (Grant no. PSW- 045/13-14-ERO) and UGC-DAE CSR, Kolkata Centre, Collaborative Research Schemes (UGC-DAE-CSR-KC/ CRS/13/RC11/0984/0988). UKS would also like to thank INSA, New Delhi (SP/VF-9/2014-15/273 1st April, 2014), for INSA visiting Scientist Fellowship for 2014–2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to UJJAL KUMAR SUR.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 74.8 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SUR, U.K., SAHA, A., DATTA, A. et al. Synthesis and characterization of stable aqueous dispersions of graphene. Bull Mater Sci 39, 159–165 (2016). https://doi.org/10.1007/s12034-015-0893-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-0893-0

Keywords

Navigation