Skip to main content
Log in

A.c. conductivity and dielectric study of LiNiPO4 synthesized by solid-state method

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

LiNiPO4 compound was prepared by the conventional solid-state reaction. The sample was characterized by X-ray powder diffraction, infrared, Raman analysis spectroscopy and electrical impedance spectroscopy. The compound crystallizes in the orthorhombic system, space group Pnma with a = 10·0252(7) Å, b = 5·8569(5) Å and c = 4·6758(4) Å. Vibrational analysis was used to identify the presence of \( \mathrm{PO}_4^{3- } \) – group in this compound. The complex impedance has been measured in the temperature and frequency ranges 654–716 K and 242 Hz–5 MHz, respectively. The Z′ and Z″ vs frequency plots are well-fitted to an equivalent circuit consisting of series of combination of grains and grain boundary elements. Dielectric data were analysed using complex electrical modulus M* for the sample at various temperatures. The modulus plots are characterized by the presence of two peaks thermally activated. The frequency dependence of the conductivity is interpreted in terms of equation: \( {\sigma_{\mathrm{a}.\mathrm{c}.}}\left( \omega \right)=\left[ {{{{{\sigma_{\mathrm{g}}}}} \left/ {{\left( {1+{\tau^2}{\omega^2}} \right)}} \right.}+\left( {{{{{\sigma_{\infty }}{\tau^2}{\omega^2}}} \left/ {{1+{\tau^2}{\omega^2}}} \right.}} \right)+A{\omega^{\mathrm{n}}}} \right] \). The near values of activation energies obtained from the analysis of M″, conductivity data and equivalent circuit confirms that the transport is through ion hopping mechanism dominated by the motion of Li+ in the structure of the investigated material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahams C M I and Easson K S 1993 Acta Crystallogr. Sect. C49 925

    Google Scholar 

  • Almond D P and West A R 1987 Solid State Ionics 23 27

    Article  Google Scholar 

  • Ben Rhaiem A, Hlel F, Guidara K and Gargouri M 2009 J. Alloys Compd. 485 718

    Article  Google Scholar 

  • Ben Rhaiem A, Chouaib S and Guidara K 2010 Solid State Ionics 16 455

    Google Scholar 

  • Bergman R 2000 J. Appl. Phys. 88 1356

    Article  Google Scholar 

  • Chouaib S, Ben Rhaiem A and Guidara K 2011 Bull. Mater. Sci. 34 915

    Article  Google Scholar 

  • Dussauze M 2005 Génération de second harmonique dans des verres borophosphate de sodium et niobium par polarisation thermique, Université bordeaux I, Thèse

  • Hong H Y P 1976 Mater. Res. Bull. 11 173

    Article  Google Scholar 

  • Julien C 2000 Ionics 6 30

    Article  Google Scholar 

  • Kanchan D K, Pant M and Gondaliya N 2009 Mater. Chem. Phys. 115 98

    Article  Google Scholar 

  • Louati B and Guidara K 2011 Solid State Ionics 17 633

    Google Scholar 

  • Louati B and Guidara K 2012 Mater. Sci. Eng. B177 771

    Google Scholar 

  • Macdonald J R (ed.) 1987 Impedance spectroscopy: emphasizing solid materials and systems (New York: Wiley)

    Google Scholar 

  • Macedo P B, Moynihan C T and Bose R 1972 Phys. Chem. Glasses 13 171

    Google Scholar 

  • Molenda J 2005 Solid State Ionics 176 1687

    Article  Google Scholar 

  • Moynihan C T, Boesch L P and Laberge L 1973 Phys. Chem. Glasses 14 122

    Google Scholar 

  • Nakamoto K 1978 Infrared and Raman spectra of inorganic and coordination compounds (New York: John Wiley & Sons) (3rd ed.)

    Google Scholar 

  • Newnham R E and Redham M J 1965 J. Am. Ceram. Soc. 48 547

    Article  Google Scholar 

  • Okada S, Sawa S, Egashira M, Yamaki J, Tabuchi M, Kageyama H, Konishi T and Yoshinof A 2001 J. Power Sources 430 97

    Google Scholar 

  • Subramanian M A, Subramanian R and Clearfield A 1986 Solid State Ionics 18 562

    Article  Google Scholar 

  • Uvarov N F, Hairetdinov E F, Reau J M, Bobe J M, Senegas J and Poulain M 1994 Solid State Ionics 74 195

    Article  Google Scholar 

  • Walrafen G E, Irish D E and Young F 1962 J. Chem. Phys. 37 662

    Article  Google Scholar 

  • Wang D, Li H, Shi S, Huang X and Chen L 2005 Electrochimica Acta 50 2955

    Article  Google Scholar 

  • Wang G X, Bewaly S L, Konstantino K, Liu H K, Dou S X and Ahn J-H 2004 Electrochimica Acta 50 443

    Article  Google Scholar 

  • Warda S A, Lee S-L and Krist Z 1997 New Cryst. St. 212 319

    Google Scholar 

  • Yamada A, Hosoya M, Chung S-C, Kudo Y, Hinokuma K, Liu K-Y and Nishi Y 2003 J. Power Sources 232 119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Ben Rhaiem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bechir, M.B., Rhaiem, A.B. & Guidara, K. A.c. conductivity and dielectric study of LiNiPO4 synthesized by solid-state method. Bull Mater Sci 37, 473–480 (2014). https://doi.org/10.1007/s12034-014-0685-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-014-0685-y

Keywords

Navigation