Skip to main content
Log in

Importance of Inter-residue Contacts for Understanding Protein Folding and Unfolding Rates, Remote Homology, and Drug Design

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Inter-residue interactions in protein structures provide valuable insights into protein folding and stability. Understanding these interactions can be helpful in many crucial applications, including rational design of therapeutic small molecules and biologics, locating functional protein sites, and predicting protein–protein and protein–ligand interactions. The process of developing machine learning models incorporating inter-residue interactions has been improved recently. This review highlights the theoretical models incorporating inter-residue interactions in predicting folding and unfolding rates of proteins. Utilizing contact maps to depict inter-residue interactions aids researchers in developing computer models for detecting remote homologs and interface residues within protein–protein complexes which, in turn, enhances our knowledge of the relationship between sequence and structure of proteins. Further, the application of contact maps derived from inter-residue interactions is highlighted in the field of drug discovery. Overall, this review presents an extensive assessment of the significant models that use inter-residue interactions to investigate folding rates, unfolding rates, remote homology, and drug development, providing potential future advancements in constructing efficient computational models in structural biology.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All the data and materials are available to the corresponding author upon reasonable request.

References

  1. Wu, K., Karapetyan, E., Schloss, J., Vadgama, J., & Wu, Y. (2023). Advancements in small molecule drug design: A structural perspective. Drug Discovery Today, 28(10), 103730. https://doi.org/10.1016/j.drudis.2023.103730

    Article  PubMed  Google Scholar 

  2. Kermani, A. A., Aggarwal, S., & Ghanbarpour, A. (2023). Advances in X-ray crystallography methods to study structural dynamics of macromolecules. In P. Saudagar & D. Tripathi (Eds.), Advanced spectroscopic methods to study biomolecular structure and dynamics (pp. 309–355). Elsevier.

    Chapter  Google Scholar 

  3. Peng, C.-X., Liang, F., Xia, Y.-H., Zhao, K.-L., Hou, M.-H., & Zhang, G.-J. (2024). Recent advances and challenges in protein structure prediction. Journal of Chemical Information and Modeling, 64(1), 76–95. https://doi.org/10.1021/acs.jcim.3c01324

    Article  CAS  PubMed  Google Scholar 

  4. Wodak, S. J., Vajda, S., Lensink, M. F., Kozakov, D., & Bates, P. A. (2023). Critical assessment of methods for predicting the 3D structure of proteins and protein complexes. Annual Review of Biophysics, 52(1), 183–206. https://doi.org/10.1146/annurev-biophys-102622-084607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang, H., Bei, Z., Xi, W., Hao, M., Ju, Z., SarFSavanan, K. M., & Wei, Y. (2021). Evaluation of residue-residue contact prediction methods: From retrospective to prospective. PLoS Computational Biology, 17(5), e1009027. https://doi.org/10.1371/journal.pcbi.1009027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nithiyanandam, S., Sangaraju, V. K., Manavalan, B., & Lee, G. (2023). Computational prediction of protein folding rate using structural parameters and network centrality measures. Computers in Biology and Medicine, 155, 106436. https://doi.org/10.1016/j.compbiomed.2022.106436

    Article  CAS  PubMed  Google Scholar 

  7. Bhatia, H., Aydin, F., Carpenter, T. S., Lightstone, F. C., Bremer, P.-T., Ingólfsson, H. I., & Streitz, F. H. (2023). The confluence of machine learning and multiscale simulations. Current Opinion in Structural Biology, 80, 102569. https://doi.org/10.1016/j.sbi.2023.102569

    Article  CAS  PubMed  Google Scholar 

  8. Chong, J. W. R., Khoo, K. S., Chew, K. W., Vo, D.-V.N., Balakrishnan, D., Banat, F., & Show, P. L. (2023). Microalgae identification: Future of image processing and digital algorithm. Bioresource Technology, 369, 128418. https://doi.org/10.1016/j.biortech.2022.128418

    Article  CAS  PubMed  Google Scholar 

  9. Chong, J. W. R., Khoo, K. S., Chew, K. W., Ting, H.-Y., & Show, P. L. (2023). Trends in digital image processing of isolated microalgae by incorporating classification algorithm. Biotechnology Advances, 63, 108095. https://doi.org/10.1016/j.biotechadv.2023.108095

    Article  CAS  PubMed  Google Scholar 

  10. Mondal, P. P., Galodha, A., Verma, V. K., Singh, V., Show, P. L., Awasthi, M. K., & Jain, R. (2023). Review on machine learning-based bioprocess optimization, monitoring, and control systems. Bioresource Technology, 370, 128523. https://doi.org/10.1016/j.biortech.2022.128523

    Article  CAS  PubMed  Google Scholar 

  11. Dixit, R., Khambhati, K., Supraja, K. V., Singh, V., Lederer, F., Show, P.-L., & Jain, R. (2023). Application of machine learning on understanding biomolecule interactions in cellular machinery. Bioresource Technology, 370, 128522. https://doi.org/10.1016/j.biortech.2022.128522

    Article  CAS  PubMed  Google Scholar 

  12. Greener, J. G., Kandathil, S. M., & Jones, D. T. (2019). Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints. Nature Communications, 10(1), 3977. https://doi.org/10.1038/s41467-019-11994-0

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu, J., & Wang, S. (2019). Analysis of distance-based protein structure prediction by deep learning in CASP13. Proteins, 87(12), 1069–1081. https://doi.org/10.1002/prot.25810

    Article  CAS  PubMed  Google Scholar 

  14. Du, Z., Su, H., Wang, W., Ye, L., Wei, H., Peng, Z., & Yang, J. (2021). The trRosetta server for fast and accurate protein structure prediction. Nature Protocols, 16(12), 5634–5651. https://doi.org/10.1038/s41596-021-00628-9

    Article  CAS  PubMed  Google Scholar 

  15. Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., & Velankar, S. (2022). AlphaFold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50(D1), D439–D444. https://doi.org/10.1093/nar/gkab1061

    Article  CAS  PubMed  Google Scholar 

  16. Tanaka, S., & Scheraga, H. A. (1975). Model of protein folding: Inclusion of short, medium, and long range interactions. Proceedings of the National Academy of Sciences of the United States of America, 72(10), 3802–3806. https://doi.org/10.1073/pnas.72.10.3802

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gromiha, M. M. (2010). Protein bioinformatics. In M. Michael Gromiha (Ed.), Protein bioinformatics. From sequence to function (1st edition). Elsevier.

    Google Scholar 

  18. Go, N., & Taketomi, H. (1978). Respective roles of short- and long-range interactions in protein folding. Proceedings of the National Academy of Sciences of the United States of America, 75(2), 559–563. https://doi.org/10.1073/pnas.75.2.559

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Go, N. (1983). Theoretical studies of protein folding. Annual Review of Biophysics and Bioengineering, 12, 183–210. https://doi.org/10.1146/annurev.bb.12.060183.001151

    Article  CAS  PubMed  Google Scholar 

  20. Karplus, M., & Weaver, D. L. (1976). Protein-folding dynamics. Nature, 260(5550), 404–406. https://doi.org/10.1038/260404a0

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Rollins, G. C., & Dill, K. A. (2014). General Mechanism of two-state protein folding kinetics. Journal of the American Chemical Society, 136(32), 11420–11427. https://doi.org/10.1021/ja5049434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guo, J. S., Mi, D., & Sun, Y. Q. (2010). Folding kinetics of two-state proteins based on the model of general random walk in native contact number space. Physica A: Statistical Mechanics and its Applications, 389(4), 761–766. https://doi.org/10.1016/j.physa.2009.10.026

    Article  ADS  Google Scholar 

  23. Kuwajima, K. (2020). The molten globule, and two-state vs non-two-state folding of globular proteins. Biomolecules, 10(3), 407. https://doi.org/10.3390/biom10030407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eaton, W. A. (2021). Modern kinetics and mechanism of protein folding: A retrospective. The Journal of Physical Chemistry B, 125(14), 3452–3467. https://doi.org/10.1021/acs.jpcb.1c00206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gromiha, M. M., & Selvaraj, S. (1997). Influence of medium and long range interactions in different structural classes of globular proteins. Journal of Biological Physics, 23(3), 151–162. https://doi.org/10.1023/A:1004981409616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gromiha, M. M., & Selvaraj, S. (1999). Importance of long-range interactions in protein folding. Biophysical Chemistry, 77(1), 49–68. https://doi.org/10.1016/S0301-4622(99)00010-1

    Article  CAS  PubMed  Google Scholar 

  27. Selvaraj, S., & Gromiha, M. M. (2000). Inter-residue interactions in protein structures. Current Science, 78(2), 129–131.

    CAS  Google Scholar 

  28. Deller, M. C., Kong, L., & Rupp, B. (2016). Protein stability: A crystallographer’s perspective. Acta Crystallographica Section F, 72(2), 72–95. https://doi.org/10.1107/S2053230X15024619

    Article  CAS  Google Scholar 

  29. Selvaraj, S., & Gromiha, M. M. (1998). Importance of long-range interactions in (α/β)8 barrel fold. Journal of Protein Chemistry, 17(7), 691–697. https://doi.org/10.1007/BF02780972

    Article  CAS  PubMed  Google Scholar 

  30. Selvaraj, S., & Gromiha, M. M. (2003). Role of hydrophobic clusters and long-range contact networks in the folding of (α/β)8 barrel proteins. Biophysical Journal, 84(3), 1919–1925. https://doi.org/10.1016/S0006-3495(03)75000-0

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gromiha, M. M., & Selvaraj, S. (2001). Role of medium- and long-range interactions in discriminating globular and membrane proteins. International Journal of Biological Macromolecules, 29(1), 25–34. https://doi.org/10.1016/S0141-8130(01)00150-7

    Article  CAS  PubMed  Google Scholar 

  32. Krigbaum, W. R., & Komoriya, A. (1979). Local interactions as a structure determinant for protein molecules: II. BBA: Protein Structure, 576(1), 204–228. https://doi.org/10.1016/0005-2795(79)90498-7

    Article  CAS  Google Scholar 

  33. Narayana, S. V. L., & Argos, P. (1984). Residue contacts in protein structures and implications for protein folding. International Journal of Peptide and Protein Research, 24(1), 25–39. https://doi.org/10.1111/j.1399-3011.1984.tb00924.x

    Article  CAS  PubMed  Google Scholar 

  34. Crippen, G. M. (1991). Prediction of protein folding from amino acid sequence over discrete conformation spaces. Biochemistry, 30(17), 4232–4237. https://doi.org/10.1021/bi00231a018

    Article  CAS  PubMed  Google Scholar 

  35. Gugolya, Z., Dosztányi, Z., & Simon, I. (1997). Interresidue interactions in protein classes. Proteins, 27(3), 360–366.

    Article  CAS  PubMed  Google Scholar 

  36. Gromiha, M. M., & Selvaraj, S. (2001). Comparison between long-range interactions and contact order in determining the folding rate of two-state proteins: Application of long-range order to folding rate prediction. Journal of Molecular Biology, 310(1), 27–32. https://doi.org/10.1006/jmbi.2001.4775

    Article  CAS  PubMed  Google Scholar 

  37. Kumarevel, T. S., Gromiha, M. M., Selvaraj, S., Gayatri, K., & Kumar, P. K. R. (2002). Influence of medium- and long-range interactions in different folding types of globular proteins. Biophysical Chemistry, 99(2), 189–198. https://doi.org/10.1016/S0301-4622(02)00183-7

    Article  CAS  PubMed  Google Scholar 

  38. Tüdos, É., Fiser, A., Simon, Á., Dosztányi, Z., Fuxreiter, M., Magyar, C., & Simon, I. (2004). Noncovalent cross-links in context with other structural and functional elements of proteins. Journal of Chemical Information and Computer Sciences, 44(2), 347–351. https://doi.org/10.1021/ci030409i

    Article  CAS  PubMed  Google Scholar 

  39. Faísca, P. F. N., Telo Da Gama, M. M., & Nunes, A. (2005). The Gō model revisited: Native structure and the geometric coupling between local and long-range contacts. Proteins, 60(4), 712–722. https://doi.org/10.1002/prot.20521

    Article  CAS  PubMed  Google Scholar 

  40. Mounce, B. C., Kurt, N., Ellison, P. A., & Cavagnero, S. (2009). Nonrandom distribution of intramolecular contacts in native single-domain proteins. Proteins, 75(2), 404–412. https://doi.org/10.1002/prot.22258

    Article  CAS  PubMed  Google Scholar 

  41. Rishya Kulya, M., & Saravanan, K. (2014). Computational structural analysis of C-terminal residues of proteins containing transmembrane regions. International Journal for Computational Biology, 4(1), 44. https://doi.org/10.34040/ijcb.4.1.2014.47

    Article  Google Scholar 

  42. Chen, P., & Li, J. (2010). Prediction of protein long-range contacts using an ensemble of genetic algorithm classifiers with sequence profile centers. BMC Structural Biology, 10(Suppl 1), S2. https://doi.org/10.1186/1472-6807-10-S1-S2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Esque, J., Oguey, C., & De Brevern, A. G. (2011). Comparative analysis of threshold and tessellation methods for determining protein contacts. Journal of Chemical Information and Modeling, 51(2), 493–507. https://doi.org/10.1021/ci100195t

    Article  CAS  PubMed  Google Scholar 

  44. Eickholt, J., Wang, Z., & Cheng, J. (2011). A conformation ensemble approach to protein residue-residue contact. BMC Structural Biology, 11(1), 38. https://doi.org/10.1186/1472-6807-11-38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yuan, C., Chen, H., & Kihara, D. (2012). Effective inter-residue contact definitions for accurate protein fold recognition. BMC Bioinformatics, 13(1), 292. https://doi.org/10.1186/1471-2105-13-292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang, J., Jin, Q. Y., Zhang, B., & Shen, H. B. (2016). R2C: Improving ab initio residue contact map prediction using dynamic fusion strategy and Gaussian noise filter. Bioinformatics, 32(16), 2435–2443. https://doi.org/10.1093/bioinformatics/btw181

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, H., Huang, Y., Bei, Z., Ju, Z., Meng, J., Hao, M., & Xi, W. (2022). Inter-residue distance prediction from duet deep learning models. Frontiers in Genetics, 13, 887491. https://doi.org/10.3389/fgene.2022.887491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, H., Hao, M., Wu, H., Ting, H.-F., Tang, Y., Xi, W., & Wei, Y. (2022). Protein residue contact prediction based on deep learning and massive statistical features from multi-sequence alignment. Tsinghua Science and Technology, 27(5), 843–854. https://doi.org/10.26599/TST.2021.9010064

    Article  CAS  Google Scholar 

  49. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fiser, A., & Šali, A. (2003). MODELLER: Generation and refinement of homology-based protein structure models. Methods in Enzymology, 374, 461–491. https://doi.org/10.1016/S0076-6879(03)74020-8

    Article  CAS  PubMed  Google Scholar 

  51. Wang, S., Sun, S., Li, Z., Zhang, R., & Xu, J. (2017). Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS Computational Biology, 13(1), e1005324. https://doi.org/10.1371/journal.pcbi.1005324

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Källberg, M., Wang, H., Wang, S., Peng, J., Wang, Z., Lu, H., & Xu, J. (2012). Template-based protein structure modeling using the RaptorX web server. Nature Protocols, 7(8), 1511–1522. https://doi.org/10.1038/nprot.2012.085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang, J., Anishchenko, I., Park, H., Peng, Z., Ovchinnikov, S., & Baker, D. (2020). Improved protein structure prediction using predicted interresidue orientations. Proceedings of the National Academy of Sciences, 117(3), 1496–1503. https://doi.org/10.1073/pnas.1914677117

    Article  ADS  CAS  Google Scholar 

  54. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., & Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Skolnick, J., Gao, M., Zhou, H., & Singh, S. (2021). AlphaFold 2: Why it works and its implications for understanding the relationships of protein sequence, structure, and function. Journal of Chemical Information and Modeling, 61(10), 4827–4831. https://doi.org/10.1021/acs.jcim.1c01114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., & Hassabis, D. (2021). Applying and improving AlphaFold at CASP14. Proteins, 89(12), 1711–1721. https://doi.org/10.1002/prot.26257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ching, T., Himmelstein, D. S., Beaulieu-Jones, B. K., Kalinin, A. A., Do, B. T., Way, G. P., & Greene, C. S. (2018). Opportunities and obstacles for deep learning in biology and medicine. Journal of the Royal Society Interface, 15(141), 20170387. https://doi.org/10.1098/rsif.2017.0387

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tsuboyama, K., Dauparas, J., Chen, J., Laine, E., Mohseni Behbahani, Y., Weinstein, J. J., & Rocklin, G. J. (2023). Mega-scale experimental analysis of protein folding stability in biology and design. Nature, 620(7973), 434–444. https://doi.org/10.1038/s41586-023-06328-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Englander, S. W., & Mayne, L. (2017). The case for defined protein folding pathways. Proceedings of the National Academy of Sciences, 114(31), 8253–8258. https://doi.org/10.1073/pnas.1706196114

    Article  ADS  CAS  Google Scholar 

  60. Jackson, S. E., & Fersht, A. R. (1991). Folding of Chymotrypsin Inhibitor 2.1. Evidence for a two-state transition. Biochemistry, 30(43), 10428–10435. https://doi.org/10.1021/bi00107a010

    Article  CAS  PubMed  Google Scholar 

  61. Jackson, S. E. (1998). How do small single-domain proteins fold? Folding and Design, 3(4), R81–R91. https://doi.org/10.1016/S1359-0278(98)00033-9

    Article  CAS  PubMed  Google Scholar 

  62. Zwanzig, R. (1997). Two-state models of protein folding kinetics. Proceedings of the National Academy of Sciences of the United States of America, 94(1), 148–150. https://doi.org/10.1073/pnas.94.1.148

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fersht, A. R., & Daggett, V. (2002). Protein Folding and unfolding at atomic resolution. Cell, 108(4), 573–582. https://doi.org/10.1016/S0092-8674(02)00620-7

    Article  CAS  PubMed  Google Scholar 

  64. Plaxco, K. W., Simons, K. T., & Baker, D. (1998). Contact order, transition state placement and the refolding rates of single domain proteins. Journal of Molecular Biology, 277(4), 985–994. https://doi.org/10.1006/jmbi.1998.1645

    Article  CAS  PubMed  Google Scholar 

  65. Muñoz, V., & Eaton, W. A. (1999). A simple model for calculating the kinetics of protein folding from three-dimensional structures. Proceedings of the National Academy of Sciences of the United States of America, 96(20), 11311–11316. https://doi.org/10.1073/pnas.96.20.11311

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  66. Debe, D. A., & Goddard, W. A. (1999). First principles prediction of protein folding rates. Journal of Molecular Biology, 294(3), 619–625. https://doi.org/10.1006/jmbi.1999.3278

    Article  CAS  PubMed  Google Scholar 

  67. Zhou, H., & Zhou, Y. (2002). Folding rate prediction using total contact distance. Biophysical Journal, 82(1), 458–463. https://doi.org/10.1016/S0006-3495(02)75410-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Makarov, D. E., Keller, C. A., Plaxco, K. W., & Metiu, H. (2002). How the folding rate constant of simple, single-domain proteins depends on the number of native contacts. Proceedings of the National Academy of Sciences of the United States of America, 99(6), 3535–3539. https://doi.org/10.1073/pnas.052713599

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Makarov, D. E. (2003). The topomer search model: A simple, quantitative theory of two-state protein folding kinetics. Protein Science, 12(1), 17–26. https://doi.org/10.1110/ps.0220003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Micheletti, C. (2003). Prediction of folding rates and transition-state placement from native-state geometry. Proteins, 51(1), 74–84. https://doi.org/10.1002/prot.10342

    Article  CAS  PubMed  Google Scholar 

  71. Zhang, L., Li, J., Jiang, Z., & Xia, A. (2003). Folding rate prediction based on neural network model. Polymer, 44(5), 1751–1756. https://doi.org/10.1016/S0032-3861(03)00021-1

    Article  CAS  Google Scholar 

  72. Weikl, T. R., & Dill, K. A. (2003). Folding rates and low-entropy-loss routes of two-state proteins. Journal of Molecular Biology, 329(3), 585–598. https://doi.org/10.1016/S0022-2836(03)00436-4

    Article  CAS  PubMed  Google Scholar 

  73. Gromiha, M. M. (2003). Importance of native-state topology for determining the folding rate of two-state proteins. Journal of Chemical Information and Computer Sciences, 43(5), 1481–1485. https://doi.org/10.1021/ci0340308

    Article  CAS  PubMed  Google Scholar 

  74. Kuznetsov, I. B., & Rackovsky, S. (2004). Class-specific correlations between protein folding rate, structure-derived, and sequence-derived descriptors. Proteins, 54(2), 333–341. https://doi.org/10.1002/prot.10518

    Article  CAS  PubMed  Google Scholar 

  75. Gromiha, M. M., Saraboji, K., Ahmad, S., Ponnuswamy, M. N., & Suwa, M. (2004). Role of non-covalent interactions for determining the folding rate of two-state proteins. Biophysical Chemistry, 107(3), 263–272. https://doi.org/10.1016/j.bpc.2003.09.008

    Article  CAS  PubMed  Google Scholar 

  76. Bai, Y., Zhou, H., & Zhou, Y. (2004). Critical nucleation size in the folding of small apparently two-state proteins. Protein Science, 13(5), 1173–1181. https://doi.org/10.1110/ps.03587604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Paci, E., Lindorff-Larsen, K., Dobson, C. M., Karplus, M., & Vendruscolo, M. (2005). Transition state contact orders correlate with protein folding rates. Journal of Molecular Biology, 352(3), 495–500. https://doi.org/10.1016/j.jmb.2005.06.081

    Article  CAS  PubMed  Google Scholar 

  78. Dixit, P. D., & Weikl, T. R. (2006). A simple measure of native-state topology and chain connectivity predicts the folding rates of two-state proteins with and without crosslinks. Proteins, 64(1), 193–197. https://doi.org/10.1002/prot.20976

    Article  CAS  PubMed  Google Scholar 

  79. Bagler, G., & Sinha, S. (2007). Assortative mixing in protein contact networks and protein folding kinetics. Bioinformatics, 23(14), 1760–1767. https://doi.org/10.1093/bioinformatics/btm257

    Article  CAS  PubMed  Google Scholar 

  80. Gromiha, M. M. (2009). Multiple contact network is a key determinant to protein folding rates. Journal of Chemical Information and Modeling, 49(4), 1130–1135. https://doi.org/10.1021/ci800440x

    Article  CAS  PubMed  Google Scholar 

  81. Jiang, Y., Iglinski, P., & Kurgan, L. (2009). Prediction of protein folding rates from primary sequences using hybrid sequence representation. Journal of Computational Chemistry, 30(5), 772–783. https://doi.org/10.1002/jcc.21096

    Article  CAS  PubMed  Google Scholar 

  82. Harihar, B., & Selvaraj, S. (2009). Refinement of the long-range order parameter in predicting folding rates of two-state proteins. Biopolymers, 91(11), 928–935. https://doi.org/10.1002/bip.21281

    Article  CAS  PubMed  Google Scholar 

  83. Gong, H., Isom, D. G., Srinivasan, R., & Rose, G. D. (2003). Local secondary structure content predicts folding rates for simple, two-state proteins. Journal of Molecular Biology, 327(5), 1149–1154. https://doi.org/10.1016/S0022-2836(03)00211-0

    Article  CAS  PubMed  Google Scholar 

  84. Nölting, B., Schälike, W., Hampel, P., Grundig, F., Gantert, S., Sips, N., & Qi, P. X. (2003). Structural determinants of the rate of protein folding. Journal of Theoretical Biology, 223(3), 299–307. https://doi.org/10.1016/S0022-5193(03)00091-2

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  85. Zhang, L., & Sun, T. (2005). Folding rate prediction using n-order contact distance for proteins with two- and three-state folding kinetics. Biophysical Chemistry, 113(1), 9–16. https://doi.org/10.1016/j.bpc.2004.07.036

    Article  CAS  PubMed  Google Scholar 

  86. Prabhu, N. P., & Bhuyan, A. K. (2006). Prediction of folding rates of small proteins: Empirical relations based on length, secondary structure content, residue type, and stability. Biochemistry, 45(11), 3805–3812. https://doi.org/10.1021/bi0521137

    Article  CAS  PubMed  Google Scholar 

  87. Huang, J. T., Cheng, J. P., & Chen, H. (2007). Secondary structure length as a determinant of folding rate of proteins with two- and three-state kinetics. Proteins, 67(1), 12–17. https://doi.org/10.1002/prot.21282

    Article  CAS  PubMed  Google Scholar 

  88. Gromiha, M. M. (2005). A statistical model for predicting protein folding rates from amino acid sequence with structural class information. Journal of Chemical Information and Modeling, 45(2), 494–501. https://doi.org/10.1021/ci049757q

    Article  CAS  PubMed  Google Scholar 

  89. Gromiha, M. M., Thangakani, A. M., & Selvaraj, S. (2006). FOLD-RATE: Prediction of protein folding rates from amino acid sequence. Nucleic Acids Research, 34, W70–W74. https://doi.org/10.1093/nar/gkl043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ma, B. G., Guo, J. X., & Zhang, H. Y. (2006). Direct correlation between proteins’ folding rates and their amino acid compositions: An ab initio folding rate prediction. Proteins, 65(2), 362–372. https://doi.org/10.1002/prot.21140

    Article  CAS  PubMed  Google Scholar 

  91. Huang, J. T., & Tian, J. (2006). Amino acid sequence predicts folding rate for middle-size two-state proteins. Proteins, 63(3), 551–554. https://doi.org/10.1002/prot.20911

    Article  CAS  PubMed  Google Scholar 

  92. Huang, L. T., & Gromiha, M. M. (2008). Analysis and prediction of protein folding rates using quadratic response surface models. Journal of Computational Chemistry, 29(10), 1675–1683. https://doi.org/10.1002/jcc.20925

    Article  CAS  PubMed  Google Scholar 

  93. Ouyang, Z., & Liang, J. (2008). Predicting protein folding rates from geometric contact and amino acid sequence. Protein Science, 17(7), 1256–1263. https://doi.org/10.1110/ps.034660.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gao, J., Zhang, T., Zhang, H., Shen, S., Ruan, J., & Kurgan, L. (2010). Accurate prediction of protein folding rates from sequence and sequence-derived residue flexibility and solvent accessibility. Proteins, 78(9), 2114–2130. https://doi.org/10.1002/prot.22727

    Article  CAS  PubMed  Google Scholar 

  95. Chang, L., Wang, J., & Wang, W. (2010). Composition-based effective chain length for prediction of protein folding rates. Physical Review E, 82(5), 051930. https://doi.org/10.1103/PhysRevE.82.051930

    Article  ADS  CAS  Google Scholar 

  96. Guo, J., & Rao, N. (2011). Predicting protein folding rate from amino acid sequence. Journal of Bioinformatics and Computational Biology, 9(1), 1–13. https://doi.org/10.1142/S0219720011005306

    Article  CAS  PubMed  Google Scholar 

  97. Galzitskaya, O. V., Garbuzynskiy, S. O., Ivankov, D. N., & Finkelstein, A. V. (2003). Chain length is the main determinant of the folding rate for proteins with three-state folding kinetics. Proteins, 51(2), 162–166. https://doi.org/10.1002/prot.10343

    Article  CAS  PubMed  Google Scholar 

  98. Ivankov, D. N., Garbuzynskiy, S. O., Alm, E., Plaxco, K. W., Baker, D., & Finkelstein, A. V. (2003). Contact order revisited: Influence of protein size on the folding rate. Protein Science, 12(9), 2057–2062. https://doi.org/10.1110/ps.0302503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ma, B. G., Chen, L. L., & Zhang, H. Y. (2007). What determines protein folding type? An investigation of intrinsic structural properties and its implications for understanding folding mechanisms. Journal of Molecular Biology, 370(3), 439–448. https://doi.org/10.1016/j.jmb.2007.04.051

    Article  CAS  PubMed  Google Scholar 

  100. Huang, J. T., & Cheng, J. P. (2008). Differentiation between two-state and multi-state folding proteins based on sequence. Proteins, 72(1), 44–49. https://doi.org/10.1002/prot.21893

    Article  CAS  PubMed  Google Scholar 

  101. Ivankov, D. N., Bogatyreva, N. S., Lobanov, M. Y., & Galzitskaya, O. V. (2009). Coupling between properties of the protein shape and the rate of protein folding. PLoS ONE, 4(8), e6476. https://doi.org/10.1371/journal.pone.0006476

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  102. Guo, J., Rao, N., Liu, G., Yang, Y., & Wang, G. (2011). Predicting protein folding rates using the concept of Chou’s pseudo amino acid composition. Journal of Computational Chemistry, 32(8), 1612–1617. https://doi.org/10.1002/jcc.21740

    Article  CAS  PubMed  Google Scholar 

  103. Ittah, V., & Haas, E. (1995). Nonlocal interactions stabilize long range loops in the initial folding intermediates of reduced bovine pancreatic trypsin inhibitor. Biochemistry, 34(13), 4493–4506. https://doi.org/10.1021/bi00013a042

    Article  CAS  PubMed  Google Scholar 

  104. Klein-Seetharaman, J., Oikawa, M., Grimshaw, S. B., Wirmer, J., Duchardt, E., Ueda, T., & Schwalbe, H. (2002). Long-range interactions within a nonnative protein. Science, 295(5560), 1719–1722. https://doi.org/10.1126/science.1067680

    Article  ADS  CAS  PubMed  Google Scholar 

  105. Lietzow, M. A., Jamin, M., Jane Dyson, H., & Wright, P. E. (2002). Mapping long-range contacts in a highly unfolded protein. Journal of Molecular Biology, 322(4), 655–662. https://doi.org/10.1016/S0022-2836(02)00847-1

    Article  CAS  PubMed  Google Scholar 

  106. Mizuguchi, M., Kroon, G. J., Wright, P. E., & Dyson, H. J. (2003). Folding of a β-sheet protein monitored by real-time NMR spectroscopy. Journal of Molecular Biology, 328(5), 1161–1171. https://doi.org/10.1016/S0022-2836(03)00349-8

    Article  CAS  PubMed  Google Scholar 

  107. Dedmon, M. M., Lindorff-Larsen, K., Christodoulou, J., Vendruscolo, M., & Dobson, C. M. (2005). Mapping long-range interactions in α-synuclein using spin-label NMR and ensemble molecular dynamics simulations. Journal of the American Chemical Society, 127(2), 476–477. https://doi.org/10.1021/ja044834j

    Article  CAS  PubMed  Google Scholar 

  108. Saravanan, K. M., Zhang, H., Zhang, H., Xi, W., & Wei, Y. (2020). On the conformational dynamics of β-Amyloid forming peptides: A computational perspective. Frontiers in Bioengineering and Biotechnology, 8, 532. https://doi.org/10.3389/fbioe.2020.00532

    Article  PubMed  PubMed Central  Google Scholar 

  109. Mok, K. H., Kuhn, L. T., Goez, M., Day, I. J., Lin, J. C., Andersen, N. H., & Hore, P. J. (2007). A pre-existing hydrophobic collapse in the unfolded state of an ultrafast folding protein. Nature, 447(7140), 106–109. https://doi.org/10.1038/nature05728

    Article  ADS  CAS  PubMed  Google Scholar 

  110. Felitsky, D. J., Lietzow, M. A., Dyson, H. J., & Wright, P. E. (2008). Modeling transient collapsed states of an unfolded protein to provide insights into early folding events. Proceedings of the National Academy of Sciences of the United States of America, 105(17), 6278–6283. https://doi.org/10.1073/pnas.0710641105

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  111. Meier, S., Blackledge, M., & Grzesiek, S. (2008). Conformational distributions of unfolded polypeptides from novel NMR techniques. The Journal of Chemical Physics, 128(5), 052204. https://doi.org/10.1063/1.2838167

    Article  ADS  CAS  PubMed  Google Scholar 

  112. Zarrine-Afsar, A., Wallin, S., Neculai, A. M., Neudecker, P., Howell, P. L., Davidson, A. R., & Hue, S. C. (2008). Theoretical and experimental demonstration of the importance of specific nonnative interactions in protein folding. Proceedings of the National Academy of Sciences of the United States of America, 105(29), 9999–10004. https://doi.org/10.1073/pnas.0801874105

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  113. Nabuurs, S. M., De Kort, B. J., Westphal, A. H., & Van Mierlo, C. P. M. (2010). Non-native hydrophobic interactions detected in unfolded apoflavodoxin by paramagnetic relaxation enhancement. European Biophysics Journal, 39(4), 689–698. https://doi.org/10.1007/s00249-009-0556-4

    Article  CAS  PubMed  Google Scholar 

  114. Hagen, S. J., Hofrichter, J., Szabo, A., & Eaton, W. A. (1996). Diffusion-limited contact formation in unfolded cytochrome c: Estimating the maximum rate of protein folding. Proceedings of the National Academy of Sciences of the United States of America, 93(21), 11615–11617. https://doi.org/10.1073/pnas.93.21.11615

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gellman, S. H. (1998). Minimal model systems for β sheet secondary structure in proteins. Current Opinion in Chemical Biology, 2(6), 717–725. https://doi.org/10.1016/S1367-5931(98)80109-9

    Article  CAS  PubMed  Google Scholar 

  116. Krieger, F., Fierz, B., Bieri, O., Drewello, M., & Kiefhaber, T. (2003). Dynamics of unfolded polypeptide chains as model for the earliest steps in protein folding. Journal of Molecular Biology, 332(1), 265–274. https://doi.org/10.1016/S0022-2836(03)00892-1

    Article  CAS  PubMed  Google Scholar 

  117. Mirny, L. A., Abkevich, V. I., & Shakhnovich, E. I. (1998). How evolution makes proteins fold quickly. Proceedings of the National Academy of Sciences of the United States of America, 95(9), 4976–4981. https://doi.org/10.1073/pnas.95.9.4976

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  118. Dokholyan, N. V., Li, L., Ding, F., & Shakhnovich, E. I. (2002). Topological determinants of protein folding. Proceedings of the National Academy of Sciences of the United States of America, 99(13), 8637–8641. https://doi.org/10.1073/pnas.122076099

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fuxreiter, M., & Simon, I. (2002). Role of stabilization centers in 4 helix bundle proteins. Proteins, 48(2), 320–326. https://doi.org/10.1002/prot.10167

    Article  CAS  PubMed  Google Scholar 

  120. Mukherjee, A., & Bagchi, B. (2003). Correlation between rate of folding, energy landscape, and topology in the folding of a model protein HP-36. Journal of Chemical Physics, 118(10), 4733–4747. https://doi.org/10.1063/1.1542599

    Article  ADS  CAS  Google Scholar 

  121. Papoian, G. A., Ulander, J., Eastwood, M. P., Luthey-Schulten, Z., & Wolynes, P. G. (2004). Water in protein structure prediction. Proceedings of the National Academy of Sciences of the United States of America, 101(10), 3352–3357. https://doi.org/10.1073/pnas.0307851100

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  122. Otzen, D. E. (2002). Protein unfolding in detergents: Effect of micelle structure, ionic strength, pH, and temperature. Biophysical Journal, 83(4), 2219–2230. https://doi.org/10.1016/S0006-3495(02)73982-9

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  123. Otzen, D. E., & Oliveberg, M. (2002). Burst-phase expansion of native protein prior to global unfolding in SDS. Journal of Molecular Biology, 315(5), 1231–1240. https://doi.org/10.1006/jmbi.2001.5300

    Article  CAS  PubMed  Google Scholar 

  124. Manning, M., & Colón, W. (2004). Structural basis of protein kinetic stability: Resistance to sodium dodecyl sulfate suggests a central role for rigidity and a bias toward β-sheet structure. Biochemistry, 43(35), 11248–11254. https://doi.org/10.1021/bi0491898

    Article  CAS  PubMed  Google Scholar 

  125. Plaxco, K. W., Simons, K. T., Ruczinski, I., & Baker, D. (2000). Topology, stability, sequence, and length: Defining the determinants of two-state protein folding kinetics. Biochemistry, 39(37), 11177–11183. https://doi.org/10.1021/bi000200n

    Article  CAS  PubMed  Google Scholar 

  126. Dinner, A. R., & Karplus, M. (2001). The roles of stability and contact order in determining protein folding rates. Nature Structural Biology, 8(1), 21–22. https://doi.org/10.1038/83003

    Article  CAS  PubMed  Google Scholar 

  127. Jung, J., Buglass, A. J., & Lee, E. K. (2010). Topological quantities determining the folding/unfolding rate of two-state folding proteins. Journal of Solution Chemistry, 39(7), 943–958. https://doi.org/10.1007/s10953-010-9556-3

    Article  CAS  Google Scholar 

  128. Jung, J., Lee, J., & Moon, H. T. (2005). Topological determinants of protein unfolding rates. Proteins, 58(2), 389–395. https://doi.org/10.1002/prot.20324

    Article  CAS  PubMed  Google Scholar 

  129. Gromiha, M. M., Selvaraj, S., & Thangakani, A. M. (2006). A statistical method for predicting protein unfolding rates from amino acid sequence. Journal of Chemical Information and Modeling, 46(3), 1503–1508. https://doi.org/10.1021/ci050417u

    Article  CAS  PubMed  Google Scholar 

  130. Ji, G. S., Chun, H. L., Hao, R., Wei, Z. C., & Cun, X. W. (2008). Protein unfolding behavior studied by elastic network model. Biophysical Journal, 94(12), 4586–4596. https://doi.org/10.1529/biophysj.107.121665

    Article  CAS  Google Scholar 

  131. Harihar, B., & Selvaraj, S. (2011). Application of long-range order to predict unfolding rates of two-state proteins. Proteins, 79(3), 880–887. https://doi.org/10.1002/prot.22925

    Article  CAS  PubMed  Google Scholar 

  132. Harihar, B., & Selvaraj, S. (2011). Analysis of rate-limiting long-range contacts in the folding rate of three-state and two-state proteins. Protein & Peptide Letters, 18(10), 1042–1052. https://doi.org/10.2174/092986611796378684

    Article  CAS  Google Scholar 

  133. Samuel, S., & Balasubramanian, H. (2017). Long-range contacts in unfolding of two-state proteins. Protein & Peptide Letters, 24(3), 206–214. https://doi.org/10.2174/0929866523666161216123019

    Article  CAS  Google Scholar 

  134. Hariha, B., & Selvaraj, S. (2012). Role of long-range contacts and structural classification in understanding the free energy of unfolding of two-state proteins. Current Bioinformatics, 7(2), 143–151. https://doi.org/10.2174/157489312800604372

    Article  CAS  Google Scholar 

  135. Murzin, A. G., Brenner, S. E., Hubbard, T., & Chothia, C. (1995). SCOP: A structural classification of proteins database for the investigation of sequences and structures. Journal of Molecular Biology, 247(4), 536–540. https://doi.org/10.1016/S0022-2836(05)80134-2

    Article  CAS  PubMed  Google Scholar 

  136. Chothia, C., & Lesk, A. M. (1986). The relation between the divergence of sequence and structure in proteins. The EMBO Journal, 5(4), 823–826. https://doi.org/10.1002/j.1460-2075.1986.tb04288.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Jabeen, A., Vijayram, R., & Ranganathan, S. (2021). BIO-GATS: A tool for automated GPCR template selection through a biophysical approach for homology modeling. Frontiers in Molecular Biosciences, 8, 617176. https://doi.org/10.3389/fmolb.2021.617176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yang, J., Anishchenko, I., Park, H., Peng, Z., Ovchinnikov, S., & Baker, D. (2020). Improved protein structure prediction using predicted interresidue orientations. Proceedings of the National Academy of Sciences of the United States of America, 117(3), 1496–1503. https://doi.org/10.1073/pnas.1914677117

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  139. Roche, R., Bhattacharya, S., & Bhattacharya, D. (2021). Hybridized distance- and contact-based hierarchical structure modeling for folding soluble and membrane proteins. PLoS Computational Biology, 17(2), e1008753. https://doi.org/10.1371/journal.pcbi.1008753

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  140. Stebbings, L. A. (2004). HOMSTRAD: Recent developments of the homologous protein structure alignment database. Nucleic Acids Research, 32(90001), 203D – 207. https://doi.org/10.1093/nar/gkh027

    Article  CAS  Google Scholar 

  141. Balaji, S. (2001). PALI–a database of phylogeny and ALIgnment of homologous protein structures. Nucleic Acids Research, 29(1), 61–65. https://doi.org/10.1093/nar/29.1.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Holm, L., Kääriäinen, S., Rosenström, P., & Schenkel, A. (2008). Searching protein structure databases with DaliLite vol 3. Bioinformatics, 24(23), 2780–2781. https://doi.org/10.1093/bioinformatics/btn507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Knudsen, M., & Wiuf, C. (2010). The CATH database. Human Genomics, 4(3), 207. https://doi.org/10.1186/1479-7364-4-3-207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Nishikawa, K., Nakashima, H., Kanehisa, M., & Ooi, T. (1987). Detection of weak sequence homology of proteins for tertiary structure prediction. Protein Sequences & Data Analysis, 1, 107–116.

    CAS  Google Scholar 

  145. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  146. Dietmann, S., & Holm, L. (2001). Identification of homology in protein structure classification. Nature Structural Biology, 8(11), 953–957. https://doi.org/10.1038/nsb1101-953

    Article  CAS  PubMed  Google Scholar 

  147. Jin, X., Liao, Q., Wei, H., Zhang, J., & Liu, B. (2021). SMI-BLAST: A novel supervised search framework based on PSI-BLAST for protein remote homology detection. Bioinformatics, 37(7), 913–920. https://doi.org/10.1093/bioinformatics/btaa772

    Article  CAS  PubMed  Google Scholar 

  148. Liu, B., Li, C.-C., & Yan, K. (2020). DeepSVM-fold: Protein fold recognition by combining support vector machines and pairwise sequence similarity scores generated by deep learning networks. Briefings in Bioinformatics, 21(5), 1733–1741. https://doi.org/10.1093/bib/bbz098

    Article  PubMed  Google Scholar 

  149. Gao, S., Yu, S., & Yao, S. (2021). An efficient protein homology detection approach based on seq2seq model and ranking. Biotechnology & Biotechnological Equipment, 35(1), 633–640. https://doi.org/10.1080/13102818.2021.1892522

    Article  CAS  Google Scholar 

  150. Chen, J., Long, R., Wang, X., Liu, B., & Chou, K.-C. (2016). dRHP-PseRA: Detecting remote homology proteins using profile-based pseudo protein sequence and rank aggregation. Scientific Reports, 6(1), 32333. https://doi.org/10.1038/srep32333

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zheng, W., Wuyun, Q., Li, Y., Mortuza, S. M., Zhang, C., Pearce, R., & Zhang, Y. (2019). Detecting distant-homology protein structures by aligning deep neural-network based contact maps. PLoS Computational Biology, 15(10), e1007411. https://doi.org/10.1371/journal.pcbi.1007411

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  152. Skolnick, J., Kihara, D., & Zhang, Y. (2004). Development and large scale benchmark testing of the PROSPECTOR_3 threading algorithm. Proteins, 56(3), 502–518. https://doi.org/10.1002/prot.20106

    Article  CAS  PubMed  Google Scholar 

  153. Bhattacharya, S., Roche, R., Shuvo, M. H., & Bhattacharya, D. (2021). Recent advances in protein homology detection propelled by inter-residue interaction map threading. Frontiers in Molecular Biosciences, 8, 643752. https://doi.org/10.3389/fmolb.2021.643752

    Article  PubMed  PubMed Central  Google Scholar 

  154. Bhattacharya, S., & Bhattacharya, D. (2020). Evaluating the significance of contact maps in low-homology protein modeling using contact-assisted threading. Scientific Reports, 10(1), 2908. https://doi.org/10.1038/s41598-020-59834-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  155. Du, Z., Pan, S., Wu, Q., Peng, Z., & Yang, J. (2020). CATHER: A novel threading algorithm with predicted contacts. Bioinformatics, 36(7), 2119–2125. https://doi.org/10.1093/bioinformatics/btz876

    Article  CAS  PubMed  Google Scholar 

  156. Zhang, H., & Shen, Y. (2020). Template-based prediction of protein structure with deep learning. BMC Genomics, 21(S11), 878. https://doi.org/10.1186/s12864-020-07249-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Liu, B., Zhang, D., Xu, R., Xu, J., Wang, X., Chen, Q., & Chou, K.-C. (2014). Combining evolutionary information extracted from frequency profiles with sequence-based kernels for protein remote homology detection. Bioinformatics, 30(4), 472–479. https://doi.org/10.1093/bioinformatics/Btt709

    Article  CAS  PubMed  Google Scholar 

  158. Jin, X., Liao, Q., & Liu, B. (2021). S2L-PSIBLAST: A supervised two-layer search framework based on PSI-BLAST for protein remote homology detection. Bioinformatics, 37(23), 4321–4327. https://doi.org/10.1093/bioinformatics/btab472

    Article  CAS  PubMed  Google Scholar 

  159. Rozewicki, J., Li, S., Amada, K. M., Standley, D. M., & Katoh, K. (2019). MAFFT-DASH: Integrated protein sequence and structural alignment. Nucleic acids Research, 47(W1), W5–W10. https://doi.org/10.1093/nar/gkz342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Chen, J., Guo, M., Wang, X., & Liu, B. (2018). A comprehensive review and comparison of different computational methods for protein remote homology detection. Briefings in Bioinformatics, 19(2), 231–244. https://doi.org/10.1093/bib/bbw108

    Article  CAS  PubMed  Google Scholar 

  161. Li, Y., Zhang, C., Zheng, W., Zhou, X., Bell, E. W., Yu, D.-J., & Zhang, Y. (2021). Protein inter-residue contact and distance prediction by coupling complementary coevolution features with deep residual networks in CASP14. Proteins, 89(12), 1911–1921. https://doi.org/10.1002/prot.26211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ju, F., Zhu, J., Shao, B., Kong, L., Liu, T.-Y., Zheng, W.-M., & Bu, D. (2021). CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction. Nature Communications, 12(1), 2535. https://doi.org/10.1038/s41467-021-22869-8

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  163. Hameduh, T., Haddad, Y., Adam, V., & Heger, Z. (2020). Homology modeling in the time of collective and artificial intelligence. Computational and Structural Biotechnology Journal, 18, 3494–3506. https://doi.org/10.1016/j.csbj.2020.11.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kilinc, M., Jia, K., & Jernigan, R. L. (2023). Improved global protein homolog detection with major gains in function identification. Proceedings of the National Academy of Sciences, 120(9), e2211823120. https://doi.org/10.1073/pnas.2211823120

    Article  CAS  Google Scholar 

  165. Hamamsy, T., Morton, J. T., Blackwell, R., Berenberg, D., Carriero, N., Gligorijevic, V., & Bonneau, R. (2023). Protein remote homology detection and structural alignment using deep learning. Nature Biotechnology. https://doi.org/10.1038/s41587-023-01917-2

    Article  PubMed  Google Scholar 

  166. Mandloi, S., & Chakrabarti, S. (2017). Protein sites with more coevolutionary connections tend to evolve slower, while more variable protein families acquire higher coevolutionary connections. F1000Research, 6(453), 453. https://doi.org/10.12688/f1000research.11251.2

    Article  PubMed  PubMed Central  Google Scholar 

  167. Xie, J., Zhang, W., Zhu, X., Deng, M., & Lai, L. (2023). Coevolution-based prediction of key allosteric residues for protein function regulation. eLife, 12, e81850. https://doi.org/10.7554/eLife.81850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Saravanan, K. M., Suvaithenamudhan, S., Parthasarathy, S., & Selvaraj, S. (2017). Pairwise contact energy statistical potentials can help to find probability of point mutations. Proteins, 85(1), 54–64. https://doi.org/10.1002/prot.25191

    Article  CAS  PubMed  Google Scholar 

  169. Zhang, H., Saravanan, K. M., Lin, J., Liao, L., Ng, J.T.-Y., Zhou, J., & Wei, Y. (2020). DeepBindPoc: A deep learning method to rank ligand binding pockets using molecular vector representation. PeerJ, 8, e8864. https://doi.org/10.7717/peerj.8864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhang, H., Liao, L., Saravanan, K. M., Yin, P., & Wei, Y. (2019). DeepBindRG: A deep learning based method for estimating effective protein-ligand affinity. PeerJ, 2019(7), e7362. https://doi.org/10.7717/peerj.7362

    Article  Google Scholar 

  171. Ovchinnikov, S., Kamisetty, H., & Baker, D. (2014). Robust and accurate prediction of residue–residue interactions across protein interfaces using evolutionary information. eLife, 3, e02030. https://doi.org/10.7554/eLife.02030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Rehman, A. U., Khurshid, B., Ali, Y., Rasheed, S., Wadood, A., Ng, H.-L., & Zhang, J. (2023). Computational approaches for the design of modulators targeting protein-protein interactions. Expert Opinion on Drug Discovery, 18(3), 315–333. https://doi.org/10.1080/17460441.2023.2171396

    Article  PubMed  PubMed Central  Google Scholar 

  173. Vangone, A., Spinelli, R., Scarano, V., Cavallo, L., & Oliva, R. (2011). COCOMAPS: A web application to analyze and visualize contacts at the interface of biomolecular complexes. Bioinformatics, 27(20), 2915–2916. https://doi.org/10.1093/bioinformatics/btr484

    Article  CAS  PubMed  Google Scholar 

  174. Fischer, T. B., Holmes, J. B., Miller, I. R., Parsons, J. R., Tung, L., Hu, J. C., & Tsai, J. (2006). Assessing methods for identifying pair-wise atomic contacts across binding interfaces. Journal of Structural Biology, 153(2), 103–112. https://doi.org/10.1016/j.jsb.2005.11.005

    Article  CAS  PubMed  Google Scholar 

  175. Holm, L., & Sander, C. (1996). Mapping the protein universe. Science, 273(5275), 595–602. https://doi.org/10.1126/science.273.5275.595

    Article  ADS  CAS  PubMed  Google Scholar 

  176. Tina, K. G., Bhadra, R., & Srinivasan, N. (2007). PIC: Protein interactions calculator. Nucleic Acids Research, 35, W473–W476. https://doi.org/10.1093/nar/gkm423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Lensink, M. F., & Wodak, S. J. (2013). Docking, scoring, and affinity prediction in CAPRI. Proteins, 81(12), 2082–2095. https://doi.org/10.1002/prot.24428

    Article  CAS  PubMed  Google Scholar 

  178. Chermak, E., Petta, A., Serra, L., Vangone, A., Scarano, V., Cavallo, L., & Oliva, R. (2015). CONSRANK: A server for the analysis, comparison and ranking of docking models based on inter-residue contacts. Bioinformatics, 31(9), 1481–1483. https://doi.org/10.1093/bioinformatics/btu837

    Article  CAS  PubMed  Google Scholar 

  179. Durham, J., Zhang, J., Humphreys, I. R., Pei, J., & Cong, Q. (2023). Recent advances in predicting and modeling protein–protein interactions. Trends in Biochemical Sciences, 48(6), 527–538. https://doi.org/10.1016/j.tibs.2023.03.003

    Article  CAS  PubMed  Google Scholar 

  180. Oliva, R., Vangone, A., & Cavallo, L. (2013). Ranking multiple docking solutions based on the conservation of inter-residue contacts. Proteins, 81(9), 1571–1584. https://doi.org/10.1002/prot.24314

    Article  CAS  PubMed  Google Scholar 

  181. Vangone, A., Cavallo, L., & Oliva, R. (2013). Using a consensus approach based on the conservation of inter-residue contacts to rank CAPRI models. Proteins, 81(12), 2210–2220. https://doi.org/10.1002/prot.24423

    Article  CAS  PubMed  Google Scholar 

  182. Ramakrishna Reddy, P., Kulandaisamy, A., & Michael Gromiha, M. (2023). TMH Stab-pred: Predicting the stability of α-helical membrane proteins using sequence and structural features. Methods, 218, 118–124. https://doi.org/10.1016/j.ymeth.2023.08.005

    Article  CAS  PubMed  Google Scholar 

  183. Khakzad, H., Igashov, I., Schneuing, A., Goverde, C., Bronstein, M., & Correia, B. (2023). A new age in protein design empowered by deep learning. Cell Systems, 14(11), 925–939. https://doi.org/10.1016/j.cels.2023.10.006

    Article  CAS  PubMed  Google Scholar 

  184. Salamanca Viloria, J., Allega, M. F., Lambrughi, M., & Papaleo, E. (2017). An optimal distance cutoff for contact-based protein structure networks using side-chain centers of mass. Scientific Reports, 7(1), 2838. https://doi.org/10.1038/s41598-017-01498-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ji, S., Oruç, T., Mead, L., Rehman, M. F., Thomas, C. M., Butterworth, S., & Winn, P. J. (2019). DeepCDpred: Inter-residue distance and contact prediction for improved prediction of protein structure. PLoS ONE, 14(1), e0205214. https://doi.org/10.1371/journal.pone.0205214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Zhang, H., Zhang, Q., Ju, F., Zhu, J., Gao, Y., Xie, Z., & Bu, D. (2019). Predicting protein inter-residue contacts using composite likelihood maximization and deep learning. BMC Bioinformatics, 20(1), 537. https://doi.org/10.1186/s12859-019-3051-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Wittmann, B. J., Johnston, K. E., Wu, Z., & Arnold, F. H. (2021). Advances in machine learning for directed evolution. Current Opinion in Structural Biology, 69, 11–18. https://doi.org/10.1016/j.sbi.2021.01.008

    Article  CAS  PubMed  Google Scholar 

  188. Middendorf, L., & Eicholt, L. A. (2024). Random, de novo, and conserved proteins: How structure and disorder predictors perform differently. Proteins. https://doi.org/10.1002/prot.26652

    Article  PubMed  Google Scholar 

  189. Eickholt, J., & Cheng, J. (2012). Predicting protein residue–residue contacts using deep networks and boosting. Bioinformatics, 28(23), 3066–3072. https://doi.org/10.1093/bioinformatics/bts598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Xu, X.-L., Shi, J.-X., Wang, J., & Li, W. (2021). Long-range correlation and critical fluctuations in coevolution networks of protein sequences. Physica A: Statistical Mechanics and its Applications, 562, 125339. https://doi.org/10.1016/j.physa.2020.125339

    Article  CAS  Google Scholar 

  191. Saravanan, K. M., Zhang, H., & Wei, Y. (2021). Identifying native and non-native membrane protein loops by using stabilizing energetic terms of three popular force fields. Current Chinese Science, 1(1), 14–21. https://doi.org/10.2174/2665997201999200729165146

    Article  CAS  Google Scholar 

  192. Huang, H., & Gong, X. (2020). A review of protein inter-residue distance prediction. Current Bioinformatics. https://doi.org/10.2174/1574893615999200425230056

    Article  Google Scholar 

  193. Li, Y., Zhang, C., Bell, E. W., Zheng, W., Zhou, X., Yu, D.-J., & Zhang, Y. (2021). Deducing high-accuracy protein contact-maps from a triplet of coevolutionary matrices through deep residual convolutional networks. PLoS Computational Biology, 17(3), e1008865. https://doi.org/10.1371/journal.pcbi.1008865

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  194. Lin, P., Tao, H., Li, H., & Huang, S.-Y. (2023). Protein–protein contact prediction by geometric triangle-aware protein language models. Nature Machine Intelligence, 5(11), 1275–1284. https://doi.org/10.1038/s42256-023-00741-2

    Article  Google Scholar 

  195. Ding, W., Nakai, K., & Gong, H. (2022). Protein design via deep learning. Briefings in Bioinformatics, 23(3), bbac102. https://doi.org/10.1093/bib/bbac102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Wang, Z., & Xu, J. (2013). Predicting protein contact map using evolutionary and physical constraints by integer programming. Bioinformatics, 29(13), i266–i273. https://doi.org/10.1093/bioinformatics/btt211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Shimomura, T., Nishijima, K., & Kikuchi, T. (2019). A new technique for predicting intrinsically disordered regions based on average distance map constructed with inter-residue average distance statistics. BMC Structural Biology, 19(1), 3. https://doi.org/10.1186/s12900-019-0101-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Kikuchi, T. (1992). Similarity between average distance maps of structurally homologous proteins. Journal of Protein Chemistry, 11(3), 305–320. https://doi.org/10.1007/BF01024869

    Article  CAS  PubMed  Google Scholar 

  199. Li, Y., Liu, Y., & Yu, D.-J. (2022). Machine learning for protein inter-residue interaction prediction. Machine learning in bioinformatics of protein sequences (pp. 183–203). World Scientific.

    Google Scholar 

  200. Ishida, T., & Kinoshita, K. (2007). PrDOS: Prediction of disordered protein regions from amino acid sequence. Nucleic Acids Research, 35(suppl_2), W460–W464. https://doi.org/10.1093/nar/gkm363

    Article  PubMed  PubMed Central  Google Scholar 

  201. Ward, J. J., McGuffin, L. J., Bryson, K., Buxton, B. F., & Jones, D. T. (2004). The DISOPRED server for the prediction of protein disorder. Bioinformatics, 20(13), 2138–2139. https://doi.org/10.1093/bioinformatics/bth195

    Article  CAS  PubMed  Google Scholar 

  202. Eronen, L., Hintsanen, P., & Toivonen, H. (2012). Biomine: A network-structured resource of biological entities for link prediction. In M. R. Berthold (Ed.), BT: Bisociative knowledge discovery: An introduction to concept, algorithms, tools, and applications (pp. 364–378). Springer.

    Chapter  Google Scholar 

  203. Zheng, W., Zhou, X., Wuyun, Q., Pearce, R., Li, Y., & Zhang, Y. (2020). FUpred: Detecting protein domains through deep-learning-based contact map prediction. Bioinformatics, 36(12), 3749–3757. https://doi.org/10.1093/bioinformatics/btaa217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Anishchenko, I., Pellock, S. J., Chidyausiku, T. M., Ramelot, T. A., Ovchinnikov, S., Hao, J., & Baker, D. (2021). De novo protein design by deep network hallucination. Nature, 600(7889), 547–552. https://doi.org/10.1038/s41586-021-04184-w

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  205. Huang, S., & Huang, J. T. (2013). Inter-residue interaction is a determinant of protein folding kinetics. Journal of Theoretical Biology, 317, 224–228. https://doi.org/10.1016/j.jtbi.2012.10.003

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Funding

Funding was provided by Science and Engineering Research Board (YSS/2015/002124) Balasubramanian Harihar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Selvaraj.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest, financial, or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harihar, B., Saravanan, K.M., Gromiha, M.M. et al. Importance of Inter-residue Contacts for Understanding Protein Folding and Unfolding Rates, Remote Homology, and Drug Design. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01119-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01119-4

Keywords

Navigation