Skip to main content
Log in

Abridgement of Microbial Esterases and Their Eminent Industrial Endeavors

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Esterases are hydrolases that contribute to the hydrolysis of ester bonds into both water-soluble acyl esters and emulsified glycerol-esters containing short-chain acyl groups. They have garnered significant attention from biotechnologists and organic chemists due to their immense commercial value. Esterases, with their diverse and significant properties, have become highly sought after for various industrial applications. Synthesized ubiquitously by a wide range of living organisms, including animals, plants, and microorganisms, these enzymes have found microbial esterases to be the preferred choice in industrial settings. The cost-effective production of microbial esterases ensures higher yields, unaffected by seasonal variations. Their applications span diverse sectors, such as food manufacturing, leather tanneries, paper and pulp production, textiles, detergents, cosmetics, pharmaceuticals, biodiesel synthesis, bioremediation, and waste treatment. As the global trend shifts toward eco-friendly and sustainable practices, industrial processes are evolving with reduced waste generation, lower energy consumption, and the utilization of biocatalysts derived from renewable and unconventional raw materials. This review explores the background, structural characteristics, thermostability, and multifaceted roles of bacterial esterases in crucial industries, aiming to optimize and analyze their properties for continued successful utilization in diverse industrial processes. Additionally, recent advancements in esterase research are overviewed, showcasing novel techniques, innovations, and promising areas for further exploration.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article [and there is no supplementary information file].

References

  1. Akil, E., Pereira, A. D. S., El-Bacha, T., Amaral, P. F., & Torres, A. G. (2020). Efficient production of bioactive structured lipids by fast acidolysis catalyzed by Yarrowia lipolytica lipase, free and immobilized in chitosan-alginate beads, in solvent-free medium. International Journal of Biological Macromolecules, 163, 910–918. https://doi.org/10.1016/j.ijbiomac.2020.06.282

    Article  CAS  PubMed  Google Scholar 

  2. Alvarez, Y., Esteban-Torres, M., Cortés-Cabrera, Á., Gago, F., Acebron, I., Benavente, R., Mardo, K., De Las Rivas, B., Muñoz, R., & Mancheño, J. M. (2014). Esterase LpEst1 from Lactobacillus plantarum: A novel and atypical member of the αβ hydrolase superfamily of enzymes. PLoS ONE, 9(3), e92257. https://doi.org/10.1371/journal.pone.0092257

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alvarez-Macarie, E., & Baratti, J. (2000). short chain flavour ester synthesis by a new esterase from Bacillus licheniformis. Journal of Molecular Catalysis B Enzymatic, 10, 377–383. https://doi.org/10.1016/S1381-1177(99)00109-5

    Article  CAS  Google Scholar 

  4. Ammar, E. E. (2022). Environmental impact of biodegradation (pp. 1–40). Springer. https://doi.org/10.1007/978-3-030-83783-9_27-1

    Book  Google Scholar 

  5. Andrada, E., Marquez, A., Dib, E. P. C., Gauffin-Cano, P., & Medina, R. (2023). Corn stover silage inoculated with ferulic acid esterase producing L. johnsonii, L. plantarum, L. fermentum, and L. brevis strains fermentative and nutritional parameters. Fermentation, 9(4), 331. https://doi.org/10.3390/fermentation9040331

    Article  CAS  Google Scholar 

  6. Aquino, M., Saparrat, M. C. N., & Pildain, M. B. (2023). Umbelopsis (Mucoromycota) from patagonia, argentina: Identification, phylogenetic analysis, and expression profiling of lipase activity and lipid accumulation in selected isolates. Mycological Progress, 22(3), 18. https://doi.org/10.1007/s11557-023-01866-9

    Article  Google Scholar 

  7. Ashenhurst, J. (2022). Transesterification. Master Organic Chemistry. https://www.masterorganicchemistry.com/2022/11/10/transesterification/

  8. Ballinas-Casarrubias, L., Sánchez, G. G., Eguiarte-Franco, S., Siqueiros-Cendón, T., Flores-Gallardo, S. G., Villa, E. D., De Dios Hernández, M., Rocha-Gutiérrez, B. A., & Rascón-Cruz, Q. (2020). Chemical characterization and enzymatic control of stickies in kraft paper production. Polymers Journal, 12(1), 245. https://doi.org/10.3390/polym12010245

    Article  CAS  Google Scholar 

  9. Bartha-Vári, J., Moisă, M. E., Bencze, L., Irimie, F. D., Paizs, C., & Toşa, M. I. (2020). Efficient biodiesel production catalyzed by nanobioconjugate of lipase from Pseudomonas fluorescens. Molecules, 25(3), 651. https://doi.org/10.3390/molecules25030651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Berry, S., Bruce, J., Steenson, S., Stanner, S., Buttriss, J., Spiro, A., Gibson, P., Bowler, I., Dionisi, F., Farrell, L., Glass, A., Lovegrove, J. A., Nicholas, J., Peacock, E., Porter, S., Mensink, R. P., & Hall, W. L. (2019). Interesterified fats: What are they and why are they used? A briefing report from the Roundtable on interesterified fats in foods. Nutrition Bulletin, 44(4), 363–380. https://doi.org/10.1111/nbu.12397

    Article  Google Scholar 

  11. Bhardwaj, K. K., Dogra, A., Kapoor, S., Mehta, A., & Gupta, R. (2020). Purification and properties of an esterase from Bacillus licheniformis and it’s application in synthesis of octyl acetate. Open Microbiology Journal, 14(1), 113–121. https://doi.org/10.2174/1874285802014010113

    Article  CAS  Google Scholar 

  12. Bhardwaj, K. K., Kishen, S., Mehta, A., Sharma, A., & Gupta, R. (2021). Purification of high molecular weight thermotolerant esterase from Serratia sp. and its characterization. Biotech, 11(6), 308. https://doi.org/10.1007/s13205-021-02852-2

    Article  Google Scholar 

  13. Bhatt, P., Bhatt, K., Huang, Y., Lin, Z., & Chen, S. (2020). Esterase is a powerful tool for the biodegradation of pyrethroid insecticides. Chemosphere, 244, 125507. https://doi.org/10.1016/j.chemosphere.2019.125507

    Article  CAS  PubMed  Google Scholar 

  14. Bhatt, P., Zhou, X., Huang, Y., Zhang, W., & Chen, S. (2021). Characterization of the role of esterases in the biodegradation of organophosphate, carbamate, and pyrethroid pesticides. Journal of Hazardous Materials, 411, 125026. https://doi.org/10.1016/j.jhazmat.2020.125026

    Article  CAS  PubMed  Google Scholar 

  15. Bibra, M., Kunreddy, V. R., & Sani, R. K. (2018). Thermostable xylanase production by Geobacillus sp. strain DUSELR13 and its application in ethanol production with lignocellulosic biomass. Microorganisms, 6(3), 93. https://doi.org/10.3390/microorganisms6030093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bleffert, F., Granzin, J., Gohlke, H., Batra-Safferling, R., Jaeger, K. E., & Kovacic, F. (2019). Pseudomonas aeruginosaesterase PA2949, a bacterial homolog of the human membrane esterase ABHD6: Expression, purification and crystallization. Acta Crystallographica Section F: Structural Biology, 75(4), 270–277. https://doi.org/10.1107/s2053230x19002152

    Article  CAS  Google Scholar 

  17. Boczar, B. A., Forney, L. J., Begley, W. M., Larson, R. J., & Federle, T. W. (2001). Characterization and distribution of esterase activity in activated sludge. Water Research, 35(17), 4208–4216. https://doi.org/10.1016/s0043-1354(01)00150-6

    Article  CAS  PubMed  Google Scholar 

  18. Braddick, H., Tipping, W. J., Wilson, L. T., Jaconelli, H. S., Grant, E. K., Faulds, K., Graham, D., & Tomkinson, N. C. O. (2023). Determination of intracellular esterase activity using ratiometric raman sensing and spectral phasor analysis. Analytical Chemistry, 95(12), 5369–5376. https://doi.org/10.1021/acs.analchem.2c05708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bulgari, D., Renzetti, S., Messgo-Moumene, S., Monti, E., & Gobbi, E. (2023). Optimization of esterase production in solid-state fermentation of agricultural digestate. Fermentation, 9(6), 524. https://doi.org/10.3390/fermentation9060524

    Article  CAS  Google Scholar 

  20. Carr, P., & Ollis, D. L. (2009). Hydrolase fold: An update. Protein and Peptide Letters, 16(10), 1137–1148. https://doi.org/10.2174/092986609789071298

    Article  CAS  PubMed  Google Scholar 

  21. Chahinian, H., & Sarda, L. (2009). Distinction between esterases and lipases: Comparative biochemical properties of sequence-related carboxylesterases. Protein and Peptide Letters, 16(10), 1149–1161. https://doi.org/10.2174/092986609789071333

    Article  CAS  PubMed  Google Scholar 

  22. Chatterjee, A., Puri, S., Sharma, P., Deepa, P. R., & Chowdhury, S. (2023). Nature-inspired enzyme engineering and sustainable catalysis: Biochemical clues from the world of plants and extremophiles. Frontiers Bioengineering Biotechnology, 11, 1229300. https://doi.org/10.3389/fbioe.2023.1229300

    Article  Google Scholar 

  23. Chávez, R., Schachter, K., Navarro, C., Peirano, A., Bull, P., & Eyzaguirre, J. (2004). The acetyl xylan esterase II gene from Penicilliumpurpurogenum is differentially expressed in several carbon sources, and tightly regulated by pH. Biological Research, 37(1), 107. https://doi.org/10.4067/s0716-97602004000100011

    Article  PubMed  Google Scholar 

  24. Chen, Y., Black, D. S., & Reilly, P. J. (2016). Carboxylic ester hydrolases: Classification and database derived from their primary, secondary and tertiary structures. Protein Science, 25(11), 1942–1953. https://doi.org/10.1002/pro.3016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. D’Errico, C., Börjesson, J., Ding, H., Krogh, K. B. R. M., Spodsberg, N., Madsen, R., & Monrad, R. N. (2016). Improved biomass degradation using fungal glucuronoyl—esterases—hydrolysis of natural corn fiber substrate. Journal of Biotechnology, 219, 117–123. https://doi.org/10.1016/j.jbiotec.2015.12.024

    Article  CAS  PubMed  Google Scholar 

  26. Dahiya, D., & Nigam, P. S. (2022). Sustainable biosynthesis of esterase enzymes of desired characteristics of catalysis for pharmaceutical and food industry employing specific strains of microorganisms. Sustainability, 14(14), 8673. https://doi.org/10.3390/su14148673

    Article  CAS  Google Scholar 

  27. Darvishi, F., Fathi, Z., Ariana, M., & Moradi, H. (2017). Yarrowia lipolytica as a workhorse for biofuel production. Biochemical Engineering Journal, 127, 87–96. https://doi.org/10.1016/j.bej.2017.08.013

    Article  CAS  Google Scholar 

  28. Dash, A., & Sahoo, S. K. (2021). Role of enzymes in textile processing (pp. 395–410). Springer. https://doi.org/10.1007/978-981-33-4195-1_19

    Book  Google Scholar 

  29. De Waele, S., Vandenberghe, I., Laukens, B., Planckaert, S., Verweire, S., Van Bogaert, I., Soetaert, W., Devreese, B., & Ciesielska, K. (2018). Optimized expression of the Starmerella bombicola lactone esterase in Pichia pastoris through temperature adaptation, codon-optimization and co-expression with HAC1. Protein Expression and Purification, 143, 62–70. https://doi.org/10.1016/j.pep.2017.10.016

    Article  CAS  PubMed  Google Scholar 

  30. Di, L. (2019). The impact of carboxylesterases in drug metabolism and pharmacokinetics. Current Drug Metabolism, 20(2), 91–102. https://doi.org/10.2174/1389200219666180821094502

    Article  CAS  PubMed  Google Scholar 

  31. Dilokpimol, A., Makela, M., Mansouri, S., Бeлoвa, O. A., Waterstraat, M., Bunzel, M., De Vries, R. P., & Hildén, K. (2017). Expanding the feruloyl esterase gene family of Aspergillus niger by characterization of a feruloyl esterase, FaeC. New Biotechnology, 37, 200–209. https://doi.org/10.1016/j.nbt.2017.02.007

    Article  CAS  PubMed  Google Scholar 

  32. Distaso, M. A., Cea-Rama, I., Coscolín, C., Chernikova, T. N., Tran, H., Ferrer, M., Sanz-Aparicio, J., & Golyshin, P. N. (2023). The mobility of the cap domain is essential for the substrate promiscuity of a family IV esterase from sorghum rhizosphere microbiome. Applied Environment Microbiology, 89(1), e01807. https://doi.org/10.1128/aem.01807-22

    Article  ADS  CAS  Google Scholar 

  33. Dong, H., Pang, L., Cong, H., Shen, Y., & Yu, B. (2019). Application and design of esterase-responsive nanoparticles for cancer therapy. Journal Drug Delivery, 26(1), 416–432. https://doi.org/10.1080/10717544.2019.1588424

    Article  CAS  PubMed  Google Scholar 

  34. Doraiswamy, N., Sarathi, M., & Pennathur, G. (2020). Improvement in biochemical characteristics of cross-linked enzyme aggregates (CLEAs) with magnetic nanoparticles as support matrix. Methods in Enzymology, 630, 133–158. https://doi.org/10.1016/bs.mie.2019.10.019

    Article  CAS  PubMed  Google Scholar 

  35. Duan, X., Dai, Y., & Zhang, T. (2021). Characterization of feruloyl esterase from bacillus pumilus SK52.001 and its application in ferulic acid production from de-starched wheat bran. Foods, 10(6), 1229. https://doi.org/10.3390/foods10061229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Esteban-Torres, M., Mancheño, J. M., De Las Rivas, B., & Múñoz, R. (2014). Production and characterization of a tributyrin esterase from Lactobacillus plantarum suitable for cheese lipolysis. Journal of Dairy Science, 97(11), 6737–6744. https://doi.org/10.3168/jds.2014-8234

    Article  CAS  PubMed  Google Scholar 

  37. Fasim, A., More, V. S., & More, S. S. (2021). Large-scale production of enzymes for biotechnology uses. Current Opinion in Biotechnology, 69, 68–76. https://doi.org/10.1016/j.copbio.2020.12.002

    Article  CAS  PubMed  Google Scholar 

  38. Finch, A. J., & Kim, J. R. (2018). Thermophilic proteins as versatile scaffolds for protein engineering. Microorganisms, 6(4), 97. https://doi.org/10.3390/microorganisms6040097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Frederick, J., Hennessy, F., Horn, U., De La Torre Cortés, P., Van Den Broek, M., Strych, U., Willson, R. C., Hefer, C. A., Daran, J., Sewell, B. T., Otten, L. G., & Brady, D. (2020). The complete genome sequence of the nitrile biocatalyst Rhodococcus rhodochrous ATCC BAA-870. BMC Genomics, 21(1), 1. https://doi.org/10.1186/s12864-019-6405-7

    Article  CAS  Google Scholar 

  40. Gao, X., Mao, X., Lu, P., Secundo, F., Xue, C., & Sun, J. (2019). Cloning, expression, and characterization of a novel thermostable and alkaline-stable esterase from Stenotrophomonas maltophilia OUC_Est10 catalytically active in organic solvents. Catalysts, 9(5), 401. https://doi.org/10.3390/catal9050401

    Article  CAS  Google Scholar 

  41. García-Calvo, L., Rodríguez-Castro, R., Ullán, R. V., Albillos, S. M., Fernández-Aguado, M., Vicente, C. M., Degnes, K. F., Sletta, H., & Barreiro, C. (2023). Penicillium chrysogenum as a fungal factory for feruloyl esterases. Applied Microbiology and Biotechnology, 107(2–3), 691–717. https://doi.org/10.1007/s00253-022-12335-w

    Article  CAS  PubMed  Google Scholar 

  42. Gil-Rivas, A., De Pascual-Teresa, B., Ortín, I., & Ramos, A. (2023). New advances in the exploration of esterases with PET and fluorescent probes. Molecules, 28(17), 6265. https://doi.org/10.3390/molecules28176265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Godinho, L. F., Reis, C. R., Tepper, P. G., Poelarends, G. J., & Quax, W. J. (2011). Discovery of an Escherichia coli esterase with high activity and enantioselectivity toward 1,2- O -isopropylideneglycerol esters. Applied and Environment Microbiology, 77(17), 6094–6099. https://doi.org/10.1128/aem.05122-11

    Article  ADS  CAS  Google Scholar 

  44. Goyal, A., Vaish, D. C., Agrawal, R., Choudhary, S., & Nayak, R. (2022). Sustainable manufacturing through systematic reduction in cycle time. Sustainability, 14(24), 16473. https://doi.org/10.3390/su142416473

    Article  Google Scholar 

  45. Grizanova, E. V., Кpыцынa, T. И, Surcova, V., & Dubovskiy, I. M. (2019). The role of midgut nonspecific esterase in the susceptibility of Galleria mellonella larvae to Bacillus thuringiensis. Journal of Invertebrate Pathology, 166, 107208. https://doi.org/10.1016/j.jip.2019.107208

    Article  CAS  PubMed  Google Scholar 

  46. Haldar, D., Sen, D., & Gayen, K. (2016). A review on the production of fermentable sugars from lignocellulosic biomass through conventional and enzymatic route—a comparison. International Journal of Green Energy, 13(12), 1232–1253. https://doi.org/10.1080/15435075.2016.1181075

    Article  CAS  Google Scholar 

  47. Hassan, T. U., & Bano, A. (2016). Comparative effects of wild type Stenotrophomonasmaltophilia and its indole acetic acid-deficient mutants on wheat. Plant Biology, 18(5), 835–841. https://doi.org/10.1111/plb.12477

    Article  CAS  PubMed  Google Scholar 

  48. He, H., Yu, Q., Ding, Z., Zhang, L., Shi, G., & Li, Y. (2023). Biotechnological and food synthetic biology potential of platform strain: Bacillus licheniformis. Synthetic and Systems Biotechnology, 8(2), 281–291. https://doi.org/10.1016/j.synbio.2023.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hetrick, K. J., & Raines, R. T. (2022). Assessing and utilizing esterase specificity in antimicrobial prodrug development. Methods in Enzymology, 664, 199–220. https://doi.org/10.1016/bs.mie.2021.11.008

    Article  CAS  PubMed  Google Scholar 

  50. Holland, R., Liu, S., Crow, V. L., Delabre, M., Lubbers, M. W., Bennett, M. J., & Norris, G. (2005). Esterases of lactic acid bacteria and cheese flavour: Milk fat hydrolysis, alcoholysis and esterification. International Dairy Journal, 15(6–9), 711–718. https://doi.org/10.1016/j.idairyj.2004.09.012

    Article  CAS  Google Scholar 

  51. Holmquist, M. (2000). Alpha beta-hydrolase fold enzymes structures, functions and mechanisms. Current Protein and Peptide Science, 1(2), 209–235. https://doi.org/10.2174/1389203003381405

    Article  CAS  PubMed  Google Scholar 

  52. Hongsawat, P., & Vangnai, A. S. (2011). Biodegradation pathways of chloroanilines by Acinetobacterbaylyi strain GFJ2. Journal of Hazardous Materials, 186(2–3), 1300–1307. https://doi.org/10.1016/j.jhazmat.2010.12.002

    Article  CAS  PubMed  Google Scholar 

  53. Hou, R., Hu, J., Wang, Y., Wei, H., & Gao, M. (2020). Simultaneous production of cellulase and ferulic acid esterase by Penicillium decumbens with rice straw as the sole carbon source. Journal of Bioscience and Bioengineering, 129(3), 276–283. https://doi.org/10.1016/j.jbiosc.2019.09.013

    Article  CAS  PubMed  Google Scholar 

  54. Huang, Z., Yu, K., Xiao, Y., Wang, Y., Xiao, D., & Wang, D. (2022). Comparative genomic analysis reveals potential pathogenicity and slow-growth characteristics of genus Brevundimonas and description of Brevundimonaspishanensis sp. nov. microbiology. Spectrum, 10(2), e02468-21. https://doi.org/10.1128/spectrum.02468-21

    Article  CAS  Google Scholar 

  55. Jeong, Y. J., Baek, S. C., & Kim, H. (2018). Cloning and characterization of a novel intracellular serine protease (IspK) from Bacillus megaterium with a potential additive for detergents. International Journal of Biological Macromolecules, 108, 808–816. https://doi.org/10.1016/j.ijbiomac.2017.10.173

    Article  CAS  PubMed  Google Scholar 

  56. Jiang, Z., Qu, L., Song, G., Liu, J., & Zhong, G. (2022). The potential binding interaction and hydrolytic mechanism of carbaryl with the novel esterase PchA in Pseudomonas sp. PS21. Journal of Agricultural and Food Chemistry, 70(7), 2136–2145. https://doi.org/10.1021/acs.jafc.1c06465

    Article  CAS  PubMed  Google Scholar 

  57. Jo, E., Kim, J., Lee, A., Moon, K., & Cha, J. (2021). Identification and characterization of a novel thermostable GDSL-type lipase from Geobacillus thermocatenulatus. Journal of Microbiology and Biotechnology, 31(3), 483–491. https://doi.org/10.4014/jmb.2012.12036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Junghare, M., Spiteller, D., & Schink, B. (2019). Anaerobic degradation of xenobiotic isophthalate by the fermenting bacterium Syntrophorhabdusaromaticivorans. ISME Journal, 13(5), 1252–1268. https://doi.org/10.1038/s41396-019-0348-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kabir, S. M. M., & Koh, J. (2022). Sustainable textile processing by enzyme applications. Biodegradation Technology of Organic and Inorganic Pollutants. https://doi.org/10.5772/intechopen.97198

    Article  Google Scholar 

  60. Kameda, T., Aoki, H., Yanaka, N., & Kato, N. (2018). Production of isoflavone aglycone-enriched tempeh with Rhizopus stolonifer. Journal of Food Science and Technology, 24(3), 493–499. https://doi.org/10.3136/fstr.24.493

    Article  CAS  Google Scholar 

  61. Kameshwar, A. K. S., & Qin, W. (2018). Understanding the structural and functional properties of carbohydrate esterases with a special focus on hemicellulose deacetylating acetyl xylanesterases. The Journal of Mycology, 9(4), 273–295. https://doi.org/10.1080/21501203.2018.1492979

    Article  CAS  Google Scholar 

  62. Keawmanee, P., Rattanakreetakul, C., & Pongpisutta, R. (2021). Microbial reduction of fumonisin B1 by the new isolate Serratia marcescens 329–2. Toxins, 13(9), 638. https://doi.org/10.3390/toxins13090638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Khan, N. R., & Rathod, V. K. (2015). Enzyme catalyzed synthesis of cosmetic esters and its intensification: A review. Process Biochemistry, 50(11), 1793–1806. https://doi.org/10.1016/j.procbio.2015.07.014

    Article  CAS  Google Scholar 

  64. Khan, Z., Javed, F., Shamair, Z., Hafeez, A., Fazal, T., Aslam, A., Zimmerman, W. B., & Rehman, F. (2021). Current developments in esterification reaction: A review on process and parameters. Journal of Industrial and Engineering Chemistry, 103, 80–101. https://doi.org/10.1016/j.jiec.2021.07.018

    Article  CAS  Google Scholar 

  65. Kim, M., Jang, M., Nam, G., Shin, H., Song, J., & Kim, T. (2020). Functional expression and characterization of acetyl xylan esterases CE family 7 from Lactobacillusantri and Bacillushalodurans. Journal of Microbiology and Biotechnology, 30(2), 155–162. https://doi.org/10.4014/jmb.2001.01004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kohli, P., & Gupta, R. (2016). Medical aspects of esterases: A mini review. International Journal of Pharmacy and Pharmaceutical Sciences, 8(8), 21–26.

    CAS  Google Scholar 

  67. Konuray, G., & Erginkaya, Z. (2018). Potential use of Bacillus coagulans in the food industry. Foods, 7(6), 92. https://doi.org/10.3390/foods7060092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kour, D., Rana, K. L., Kaur, T., Singh, B., Chauhan, V., Kumar, A., Rastegari, A. A., Yadav, N., Yadav, A. N., & Gupta, V. K. (2019). Extremophiles for hydrolytic enzymes productions: Biodiversity and potential biotechnological applications (pp. 321–372). Wiley. https://doi.org/10.1002/9781119434436.ch16

    Book  Google Scholar 

  69. Kovacic, F., Bleffert, F., Caliskan, M., Wilhelm, S., Granzin, J., Batra-Safferling, R., & Jaeger, K. (2016). A membrane-bound esterase PA2949 from Pseudomonas aeruginosais expressed and purified from Escherichia coli. FEBS Open Bio, 6(5), 484–493. https://doi.org/10.1002/2211-5463.12061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Larsen, E., & Johnson, R. J. (2018). Microbial esterases and ester prodrugs: An unlikely marriage for combating antibiotic resistance. Drug Development Research, 80(1), 33–47. https://doi.org/10.1002/ddr.21468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee, C. W., Kwon, S., Park, S., Kim, B., Yoo, W., Ryu, B. H., Kim, H., Shin, S. C., Kim, S., Park, H., Kim, T. D., & Lee, J. H. (2017). Crystal structure and functional characterization of an esterase (EaEST) from Exiguobacterium antarcticum. PLoS ONE, 12(1), e0169540. https://doi.org/10.1371/journal.pone.0169540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li, L., Ding, L., Shao, Y., Sun, S., Wang, M., Xiang, J., Zhou, J., Wu, G., Song, Z., & Xin, Z. (2023). Enhancing the hydrolysis and acyl transfer activity of carboxylesterase DLFAE4 by a combinational mutagenesis and in-silico method. Foods, 12(6), 1169. https://doi.org/10.3390/foods12061169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li, P., Chen, X., Ji, P., Li, C., Wang, P., Zhang, Y., Xie, B., Qin, Q., Su, H., Zhou, B., Zhang, Y., & Zhang, X. (2015). Interdomain hydrophobic interactions modulate the thermostability of microbial esterases from the hormone-sensitive lipase family. Journal of Biological Chemistry, 290(17), 11188–11198. https://doi.org/10.1074/jbc.m115.646182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Libik-Konieczny, M., Capecka, E., Tuleja, M., & Konieczny, R. (2021). Synthesis and production of steviol glycosides: Recent research trends and perspectives. Applied Microbiology and Biotechnology, 105(10), 3883–3900. https://doi.org/10.1007/s00253-021-11306-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. López-López, O., Cerdán, M. E., & Siso, M. (2014). New extremophilic lipases and esterases from metagenomics. Current Protein and Peptide Science, 15(5), 445–455. https://doi.org/10.2174/1389203715666140228153801

    Article  CAS  PubMed  Google Scholar 

  76. Lu, M., Tian, X., Tian, A., Li, C., Ren, Y., Xu, L., Song, X., & Li, X. (2020). A novel α/β Hydrolase domain protein derived from Haemonchuscontortus acts at the parasite-host interface. Frontiers Immunology, 11, 1388. https://doi.org/10.3389/fimmu.2020.01388

    Article  CAS  Google Scholar 

  77. Lundberg, D., Stjerndahl, M., & Holmberg, K. (2022). Ester-based surfactants: Are they stable enough? Journal of Surfactants and Detergents, 26(3), 229–236. https://doi.org/10.1002/jsde.12628

    Article  CAS  Google Scholar 

  78. Maestri, C., Plancher, L., Duthoit, A., Hébert, R., & Di Martino, P. (2023). Fungal biodegradation of polyurethanes. Journal of Fungus, 9(7), 760. https://doi.org/10.3390/jof9070760

    Article  CAS  Google Scholar 

  79. Mali, H., Shah, C., Patel, D. H., Trivedi, U., & Subramanian, R. B. (2022). Degradation insight of organophosphate pesticide chlorpyrifos through novel intermediate 2, 6-dihydroxypyridine by Arthrobacter sp. HM01. Bioresources and Bioprocessing, 9(1), 1–14. https://doi.org/10.1186/s40643-022-00515-5

    Article  Google Scholar 

  80. Marchot, P., & Chatonnet, A. (2012). Enzymatic activity and protein interactions in alpha/beta hydrolase fold proteins: Moonlighting versus promiscuity. Protein and Peptide Letters, 19(2), 132–143. https://doi.org/10.2174/092986612799080284

    Article  CAS  PubMed  Google Scholar 

  81. Mate, D. M., Rivera, N. R., Sanchez-Freire, E., Ayala, J. A., Berenguer, J., & Hidalgo, A. (2019). Thermostability enhancement of the Pseudomonas fluorescens esterase I by in vivo folding selection in Thermus thermophilus. Biotechnology and Bioengineering, 117(1), 30–38. https://doi.org/10.1002/bit.27170

    Article  CAS  PubMed  Google Scholar 

  82. Matrawy, A. A., Khalil, A., & Embaby, A. M. (2022). Molecular study on recombinant cold-adapted, detergent- and alkali stable esterase (EstRag) from Lysinibacillus sp.: A member of family VI. World Journal of Microbiology and Biotechnology, 38(12), 217. https://doi.org/10.1007/s11274-022-03402-5

    Article  CAS  PubMed  Google Scholar 

  83. Mesbah, N. M. (2022). Industrial biotechnology based on enzymes from extreme environments. Frontiers in Bioengineering and Biotechnology, 10, 870083. https://doi.org/10.3389/fbioe.2022.870083

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mostafa, A. A., Al-Askar, A. A., Almaary, K. S., Dawoud, T. M., Sholkamy, E. N., & Bakri, M. M. (2018). Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi Journal of Biological Sciences, 25(2), 361–366. https://doi.org/10.1016/j.sjbs.2017.02.004

    Article  PubMed  Google Scholar 

  85. Mukdsi, M. A., Falentin, H., Maillard, M., Chuat, V., Medina, R., Parayre, S., & Thierry, A. (2014). The secreted esterase of Propionibacteriumfreudenreichii has a major role in cheese lipolysis. Applied and Environment Microbiology, 80(2), 751–756. https://doi.org/10.1128/aem.03640-13

    Article  ADS  Google Scholar 

  86. Nehra, V., Saharan, B. S., & Choudhary, M. (2016). Evaluation of Brevibacillus brevis as a potential plant growth promoting rhizobacteria for cotton (Gossypium hirsutum) crop. Springerplus, 5, 1–10. https://doi.org/10.1186/s40064-016-2584-8

    Article  CAS  Google Scholar 

  87. Ng, A. M. J., Zhang, H., & Nguyen, G. K. T. (2021). Zymography for picogram detection of lipase and esterase activities. Molecules, 26(6), 1542. https://doi.org/10.3390/molecules26061542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Niyonzima, F. N., & More, S. S. (2014). Purification and characterization of detergent-compatible protease from Aspergillusterreus gr. 3 Biotech, 5(1), 61–70. https://doi.org/10.1007/s13205-014-0200-6

    Article  PubMed  PubMed Central  Google Scholar 

  89. Noor, H., Satti, S. M., Din, S. U., Farman, M., Hasan, F., Khan, S., Badshah, M., & Shah, A. A. (2020). Insight on esterase from Pseudomonas aeruginosa strain S3 that depolymerize poly(lactic acid) (PLA) at ambient temperature. Polymer Degradation and Stability, 174, 109096. https://doi.org/10.1016/j.polymdegradstab.2020.109096

    Article  CAS  Google Scholar 

  90. Nutschel, C., Coscolín, C., David, B., Mulnaes, D., Ferrer, M., Jaeger, K., & Gohlke, H. (2021). Promiscuous esterases counterintuitively are less flexible than specific ones. Journal of Chemical Information and Modeling, 61(5), 2383–2395. https://doi.org/10.1021/acs.jcim.1c00152

    Article  CAS  PubMed  Google Scholar 

  91. Nyanhongo, G. S., Acero, E. H., Matuchaki, M. D. D. J., Rau, M., Guebitz, G. M., Andreaus, J., Gupta, V. K., Zeilinger, S., Filho, E. X. F., Durán-Dominguez-De-Bazu, M. C., Purchase, D. (2016) 2. Microbial applications for fabric and textile industries. In De Gruyter eBooks (pp. 33–78). https://doi.org/10.1515/9783110412789-004

  92. Oh, C. W., Kim, T. D., & Kim, K. K. (2019). Carboxylic ester hydrolases in bacteria: Active site, structure, function and application. Crystals, 9(11), 597. https://doi.org/10.3390/cryst9110597

    Article  CAS  Google Scholar 

  93. Öz, Y., Sürmeli, Y., & Şanlı-Mohamed, G. (2022). Enhanced thermostability of the immobilized thermoalkalophilic esterase onto magnetic-cornstarch nanoparticle. Biotechnology and Applied Biochemistry, 69(4), 1418–1427. https://doi.org/10.1002/bab.2213

    Article  CAS  PubMed  Google Scholar 

  94. Panda, T., & Gowrishankar, B. S. (2005). Production and applications of esterases. Applied Microbiology and Biotechnology, 67(2), 160–169. https://doi.org/10.1007/s00253-004-1840-y

    Article  CAS  PubMed  Google Scholar 

  95. Park, J., Jeong, G., Lee, H., & Kim, H. (2021). Molecular characterization of novel family IV and VIII esterases from a compost metagenomic library. Microorganisms, 9(8), 1614. https://doi.org/10.3390/microorganisms9081614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pérez-Rodríguez, N., Moreira, C., Agrasar, A. T., & Domínguez, J. M. (2016). Feruloyl esterase production by Aspergillus terreus CECT 2808 and subsequent application to enzymatic hydrolysis. Enyzme and Microbial Technology, 91, 52–58. https://doi.org/10.1016/j.enzmictec.2016.05.011

    Article  CAS  Google Scholar 

  97. Qiao, J., Yang, D., Feng, Y., Wan, W., Liu, X., Zhang, Y., Zheng, J., & Ying, X. (2023). Engineering a Bacillus subtilis esterase for selective hydrolysis of d, l-menthyl acetate in an organic solvent-free system. RSC Advances, 13(16), 10468–10475. https://doi.org/10.1039/d3ra00490b

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ramnath, L., Sitholé, B., & Govinden, R. (2017). Identification of lipolytic enzymes isolated from bacteria indigenous to eucalyptus wood species for application in the pulping industry. Biotechnology Reports, 15, 114–124. https://doi.org/10.1016/j.btre.2017.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rauwerdink, A., & Kazlauskas, R. J. (2015). How the same core catalytic machinery catalyzes 17 different reactions: The serine-histidine-aspartate catalytic triad of α/β-hydrolase fold enzymes. ACS Catalysis, 5(10), 6153–6176. https://doi.org/10.1021/acscatal.5b01539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Romero-Rivera, A., Garcia-Borràs, M., & Osuna, S. (2017). Computational tools for the evaluation of laboratory-engineered biocatalysts. Chemical Communications, 53(2), 284–297. https://doi.org/10.1039/c6cc06055b

    Article  CAS  Google Scholar 

  101. Rose, R., Richardson, K. H., Latvanen, E. J., Hanson, C. A., Resmini, M., & Sanders, I. A. (2020). Microbial degradation of plastic in aqueous solutions demonstrated by CO2 evolution and quantification. International Journal of Molecular Sciences, 21(4), 1176. https://doi.org/10.3390/ijms21041176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Saghatelyan, A., Margaryan, A., Panosyan, H., & Birkeland, N. K. (2021). Microbial diversity of terrestrial geothermal springs in Armenia and Nagorno-Karabakh: A review. Microorganisms, 9(7), 1473. https://doi.org/10.3390/microorganisms9071473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Saitta, F., Cannazza, P., Donzella, S., De Vitis, V., Signorelli, M., Romano, D., Molinari, F., & Fessas, D. (2022). Calorimetric and thermodynamic analysis of an enantioselective carboxylesterase from Bacillus coagulans: Insights for an industrial scale-up. Thermochimica Acta, 713, 179247. https://doi.org/10.1016/j.tca.2022.179247

    Article  CAS  Google Scholar 

  104. Sajid, M. A. (2022). Transesterification: Mechanism and Applications. PSIBERG. https://psiberg.com/transesterification/

  105. Sales, J. C. S., De Castro, A. M., Ribeiro, B. D., & Coelho, M. A. Z. (2020). Supplementation of watermelon peels as an enhancer of lipase and esterase production byYarrowia lipolyticain solid-state fermentation and their potential use as biocatalysts in poly(ethylene terephthalate) (PET) depolymerization reactions. Journal of Biocatalysis and Biotransformation, 38(6), 457–468. https://doi.org/10.1080/10242422.2020.1782387

    Article  CAS  Google Scholar 

  106. Sanchez-Hernandez, J. C. (2010). Environmental applications of earthworm esterases in the agroecosystem. Journal of Pesticide Science, 35(3), 290–301. https://doi.org/10.1584/jpestics.r10-08

    Article  CAS  Google Scholar 

  107. Sarnaik, A., Shinde, S., Mhatre, A., Jansen, A., Jha, A., Mckeown, H., Davis, R. W., & Varman, A. M. (2023). Unravelling the hidden power of esterases for biomanufacturing of short-chain esters. Scientific Report, 13(1), 10766. https://doi.org/10.1038/s41598-023-37542-x

    Article  ADS  CAS  Google Scholar 

  108. Sayali, K., Sadichha, P., & Surekha, S. (2013). Microbial esterases: An overview. International Journal of Current Microbiology Applied Science, 2(7), 135–146.

    Google Scholar 

  109. Sayer, C., Szabó, Z., Isupov, M. N., Ingham, C. J., & Littlechild, J. A. (2015). The structure of a novel thermophilic esterase from the planctomycetes species, thermoguttaterrifontisreveals an open active site due to a minimal ‘cap’ domain. Frontiers Microbiology, 6, 01294. https://doi.org/10.3389/fmicb.2015.01294

    Article  Google Scholar 

  110. Shang, N., Chen, L., Cheng, M., Tian, Y., & Huang, X. (2022). Biodegradation of diphenyl ether herbicide lactofen by Bacillus sp. YS-1 and characterization of two initial degrading esterases. Science of the Total Environment, 806, 151357. https://doi.org/10.1016/j.scitotenv.2021.151357

    Article  ADS  CAS  PubMed  Google Scholar 

  111. Sharma, T., Sharma, A., & Kanwar, S. S. (2017). An overview on esterases: Structure, classification, sources and their application. Recent Advances in Biotechnology, 2, 216–229.

    Google Scholar 

  112. Shi, K., Jing, J., Li, S., Su, T., & Wang, Z. (2020). Enzymatic hydrolysis of polyester: Degradation of poly (ε-caprolactone) by Candida antarctica lipase and Fusarium solani cutinase. International Journal of Biological Macromolecules, 144, 183–189. https://doi.org/10.1016/j.ijbiomac.2019.12.105

    Article  CAS  PubMed  Google Scholar 

  113. Silva, C., Azoia, N. G., Martins, M., Matamá, T., Wu, J., & Cavaco-Paulo, A. (2012). Molecular recognition of esterase plays a major role on the removal of fatty soils during detergency. Journal of Biotechnology, 161(3), 228–234. https://doi.org/10.1016/j.jbiotec.2012.06.019

    Article  CAS  PubMed  Google Scholar 

  114. Singh, L., Sharma, G., Awasthi, G., Kumar, L., Ali, M. I., & Moin, S. (2019). Screening, isolation and identification of thermophilic esterase enzyme isolated from Rhodococcus sp. LKE-021. Journal Pure and Applied Microbiology, 13(3), 1855–1861.

    Article  CAS  Google Scholar 

  115. Sree, V. G., Archana, D., Prithika, U., Sivapriya, E., Tejaswi, B., & PradeepKumar, A. R. (2020). Esterase like activity of Enterococcus faecalis and Lactobacillus casei on microhardness and weight loss of resin luting cements. Indian Journal of Dental Research. https://doi.org/10.4103/ijdr.ijdr_747_20

    Article  Google Scholar 

  116. Sun, X., Griffith, M., Pasternak, J., & Glick, B. R. (1995). Low temperature growth, freezing survival, and production of antifreeze protein by the plant growth promoting rhizobacteriumPseudomonas putidaGR12-2. Canadian Journal of Microbiology, 41(9), 776–784. https://doi.org/10.1139/m95-107

    Article  CAS  PubMed  Google Scholar 

  117. Szczęsna-Antczak, M., Struszczyk-Świta, K., Rzyska, M., Szeląg, J., Stańczyk, Ł, & Antczak, T. (2018). Oil accumulation and in situ trans/esterification by lipolytic fungal biomass. Bioresource Technology, 265, 110–118. https://doi.org/10.1016/j.biortech.2018.05.094

    Article  CAS  PubMed  Google Scholar 

  118. Szczyrba, E., Greń, I., & Bartelmus, G. (2013). Enzymes involved in vinyl acetate decomposition by Pseudomonas fluorescens PCM 2123 strain. Folia Microbiologica, 59(2), 99–105. https://doi.org/10.1007/s12223-013-0268-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tamoor, M., Samak, N. A., Jia, Y., Mushtaq, M. U., Sher, H., Bibi, M., & Xing, J. (2021). Potential use of microbial enzymes for the conversion of plastic waste into value-added products: A viable solution. Frontiers Microbiology, 12, 777727. https://doi.org/10.3389/fmicb.2021.777727

    Article  Google Scholar 

  120. Timkina, E., Drabova, L., Palyzová, A., Řezanka, T., Maťátková, O., & Kolouchová, I. (2022). Kocuria strains from unique radon spring water from Jachymov Spa. Journal of Fermentation, 8(1), 35. https://doi.org/10.3390/fermentation8010035

    Article  CAS  Google Scholar 

  121. Ufarté, L., Laville, E., Duquesne, S., & Potocki-Veronese, G. (2015). Metagenomics for the discovery of pollutant degrading enzymes. Biotechnology Advances, 33(8), 1845–1854. https://doi.org/10.1016/j.biotechadv.2015.10.009

    Article  CAS  PubMed  Google Scholar 

  122. Underlin, E. N., Frommhagen, M., Dilokpimol, A., Van Erven, G., & Kabel, M. A. (2020). Feruloyl esterases for biorefineries: Subfamily classified specificity for natural substrates. Frontiers Bioengineering Biotechnology, 8, 332. https://doi.org/10.3389/fbioe.2020.00332

    Article  Google Scholar 

  123. Vaquero, M. E., Barriuso, J., Medrano, F., Prieto, A., & Martínez, M. J. (2015). Heterologous expression of a fungal sterol esterase/lipase in different hosts: Effect on solubility, glycosylation and production. Journal of Bioscience and Bioengineering, 120(6), 637–643. https://doi.org/10.1016/j.jbiosc.2015.04.005

    Article  CAS  PubMed  Google Scholar 

  124. Virk, A. P., Puri, M., Gupta, V., Capalash, N., & Sharma, P. (2013). Combined enzymatic and physical deinking methodology for efficient eco-friendly recycling of old newsprint. PLoS ONE, 8(8), e72346. https://doi.org/10.1371/journal.pone.0072346

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang, H., & Wang, J. (2016). How cryo-electron microscopy and X-ray crystallography complement each other. Protein Science, 26(1), 32–39. https://doi.org/10.1002/pro.3022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang, Y., Xu, Y., Zhang, Y., Sun, A., & Hu, Y. (2018). Functional characterization of salt-tolerant microbial esterase WDEst17 and its use in the generation of optically pure ethyl (R)-3-hydroxybutyrate. Chirality, 30(6), 769–776. https://doi.org/10.1002/chir.22847

    Article  CAS  PubMed  Google Scholar 

  127. Wang, Y., Yang, C., Huang, K., & Shaw, J. (2021). Chlorophyllides: Preparation, purification, and application. Biomolecules, 11(8), 1115. https://doi.org/10.3390/biom11081115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wu, H., Yang, Y., Wang, S., Qiao, J., Xia, Y., Wang, Y., Wang, W., Gao, S., Liu, J., Xue, P., & Gao, X. (2011). Cloning, expression and characterization of a new aspartate aminotransferase from Bacillus subtilis B3. FEBS Journal, 278(8), 1345–1357. https://doi.org/10.1111/j.1742-4658.2011.08054.x

    Article  CAS  PubMed  Google Scholar 

  129. Xu, A., Zhang, X., Wu, S., Xu, N., Huang, Y., Yan, X., Zhou, J., Cui, Z., & Dong, W. (2021). Pollutant degrading enzyme: Catalytic mechanisms and their expanded applications. Molecules, 26(16), 4751. https://doi.org/10.3390/molecules26164751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Xue, D., Yao, D., You, X., & Gong, C. (2020). Green synthesis of the flavor esters with a marine Candida parapsilosis esterase expressed in Saccharomyces cerevisiae. Indian Journal of Microbiology, 60(2), 175–181. https://doi.org/10.1007/s12088-020-00856-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yang, Y., Yang, G., Hu, J., & Wang, M. (2018). Effect of mono-, di-, and trihydric alcohols on lipase-catalyzed alcoholysis of phosphatidylcholine in hexane. Grain and Oil Science and Technology, 1(2), 105–108. https://doi.org/10.3724/sp.j.1447.gost.2018.18030

    Article  Google Scholar 

  132. Yi, Y., Yang, J., Li, B., Wang, E. T., & Yuan, H. (2018). An esterase from Penicillium decumbens P6 involved in lignite depolymerization. Fuel, 214, 416–422. https://doi.org/10.1016/j.fuel.2017.11.035

    Article  CAS  Google Scholar 

  133. Zarafeta, D., Szabó, Z., Moschidi, D., Phan, H., Chrysina, E. D., Peng, X., Ingham, C. J., Kolisis, F. N., & Skretas, G. (2016). ESTDZ3: A new esterolytic enzyme exhibiting remarkable thermostability. Frontiers Microbiology, 7, 1779. https://doi.org/10.3389/fmicb.2016.01779

    Article  Google Scholar 

  134. Zeng, H., Wang, Y., Han, H., Cao, Y., & Wang, B. (2022). Changes in key aroma compounds and esterase activity of monascus-fermented cheese across a 30-day ripening period. Foods, 11(24), 4026. https://doi.org/10.3390/foods11244026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zeng, S., Liu, J., Anankanbil, S., Chen, M., Guo, Z., Adams, J. P., Snajdrova, R., & Li, Z. (2018). Amide synthesis via aminolysis of ester or acid with an intracellular lipase. ACS Catalysis, 8(9), 8856–8865. https://doi.org/10.1021/acscatal.8b02713

    Article  CAS  Google Scholar 

  136. Zhang, H., Xia, Y., Zhou, M., Zheng, J., Wang, Z., & Zhang, Y. (2019). Purification and characterization of a thermoalkaliphilic esterase from Bacillus cereus WZZ006 for enantioselective resolution of indoxacarb intermediate. International Journal of Biological Macromolecules, 140, 358–367. https://doi.org/10.1016/j.ijbiomac.2019.08.140

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is carried out with the help of prestigious material from the libraries and special thanks to the Institutes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Akram.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

The authors declare that they have no competing financial interests. We assure the integrity and quality of our research work. It is also stated that there is no plagiarism in this work and all points taken from other authors are well cited in the text. This study is completely independent and impartial.

Human and Animals Participants

N/A. This research did not involve human participants and/or animals.

Informed Consent

N/A. This research did not involve human participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, F., Fatima, T., Shabbir, I. et al. Abridgement of Microbial Esterases and Their Eminent Industrial Endeavors. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01108-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01108-7

Keywords

Navigation