Skip to main content

Environmental Impact of Biodegradation

  • Living reference work entry
  • First Online:
Handbook of Biodegradable Materials

Abstract

Globally, several indicators recorded that in 2025 about 4.3 billion urban areas may generate 2.2 billion tonnes of solid waste, e.g., nonbiodegradable plastics. This will cause cultural, social, environmental, and public health troubles. The most urgent problem is “How can countries get rid of waste?”, especially new poor industrial countries. The using of low amount of collected wastes for composing or recycling and hunge amount still find as wastes which poor countries can not rid get of them. Plastic packages are considered complex because they contain the highest composition of polymers and low recycling rates. Bioplastics are regarded as alternatives owing to their ability to biodegrade.

Accumulating the chemical residues of pesticides, herbicides, fungicides, and fertilizers as heavy metals will damage the soil structure and fertility, causing desertification and deforestation. Moreover, a gathering of oil residues from ships in marine habitats will destroy marine health. Also, the accumulation of pollutants in the air from car exhaust and factory chimneys harms the health of wildlife; thus, the nonstability of the ecosystem and human life is difficult. Undoubtedly, biodegradation will create a revolution to preserve the environment by purifying the soil and reducing the proportion of heavy elements in it, as well as purifying water and air, then improving the productivity of plants and animals and creating an environment conducive to the growth of all living creatures, especially humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Bio-PE:

Bio-polyethylene

Bio-PET:

Bio-polyethylene terephthalate

CADR:

Clean air delivery rate

GC/MS:

Gas chromatography/mass spectrometry

GHG:

Greenhouse gas

OPs:

Organophosphates

OSA:

Oil-suspended particulate substances aggregation

PAH:

Polycyclic aromatic hydrocarbon

PAs:

Pyrrolizidine alkaloids

PBAT:

Adipate terephthalate

PBS:

Polybutylene succinate

PET:

Polyethylene terephthalate

PHAs:

Polyhydroxy alkanoates

PLA:

Polylactic acid

PP:

Polypropylene

TPHs:

Total petroleum hydrocarbons

WAFs:

Water-accommodated fractions

References

  1. FAO (2017) The future of food and agriculture: trends and challenges. Food and Agriculture Organization of the United Nations. Rome ISBN 978-92-5-109551-5: 1–181

    Google Scholar 

  2. Economic commission for Latin America and the Caribbean (1991) Sustainable Development: Changing Production Patterns. United nations economic commission for latin america and the caribbean Santiago. Chile ISBN: 9211211662: 1–148.

    Google Scholar 

  3. UN News Global perspective Human stories (2021) IPCC report: ‘Code red’ for human driven global heating, warns UN chief. https://news.un.org/en/story/2021/08/1097362 (Accessed 9/08/2021)

  4. European Commission (2021) Climate change and environmental degradation. European Union. https://knowledge4policy.ec.europa.eu/climate-change-environmental-degradation_en (Accessed 2021)

  5. Chianese S, Fenti A, Iovino P, Musmarra D, Salvestrini S (2020) Sorption of organic pollutants by humic acids: A review. Molecules 25, 918:1–17

    Google Scholar 

  6. Dror I, Yaron B, Berkowitz B (2017) Microchemical contaminants as forming agents of anthropogenic soils. Ambio 46:109–120

    Article  CAS  Google Scholar 

  7. Kolankaya D (2006) Organochlorine pesticide reidues and their toxic effects on the environment and organisms in Turkey. Int J Environ Anal Chem 86:147–160

    Article  CAS  Google Scholar 

  8. Jabłońska-Trypuć A, Wołejko E, Wydro U, Butarewicz A (2017) The impact of pesticides on oxidative stress level in human organism and their activity as an endocrine disruptor. J Environ Sci Heal – Part B Pestic Food Contam Agric Wastes 52:483–494

    Google Scholar 

  9. Jayaraj R, Megha P, Sreedev P (2016) Review Article. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip Toxicol 9:90–100

    Article  CAS  Google Scholar 

  10. Wołejko E, Jabłońska-Trypuć A, Wydro U, Butarewicz A, Łozowicka B (2020) Soil biological activity as an indicator of soil pollution with pesticides – A review. Appl Soil Ecol 47(6):21700–1707

    Google Scholar 

  11. Ndiaye EL, Sandeno JM, McGrath D, Dick RP (2000) Integrative biological indicators for detecting change in soil quality. Am J Altern Agric 15(1):26–36

    Article  Google Scholar 

  12. Chmit MS, Müller J, Wiedow D, Horn G, Beuerle T (2021) Biodegradation and utilization of crop residues contaminated with poisonous pyrrolizidine alkaloids. J Environ Manage 290:112629

    Article  CAS  Google Scholar 

  13. Teschke R, Vongdala N, Quan NV, Quy TN, Xuan TD (2021) Metabolic toxification of 1,2-unsaturated pyrrolizidine alkaloids causes human hepatic sinusoidal obstruction syndrome: The update. Int J Mol Sci 22:1–43

    Article  Google Scholar 

  14. McDermott KL (2016) Plastic Pollution and the Global Throwaway Culture: Environmental Injustices of Single-use Plastic. ENV 434 Environmental Justice. 7. Spring 5-4-2016:1–8

    Google Scholar 

  15. United Nations Environment Programme and World Travel & Tourism Council (2021). Rethinking Single-Use Plastic Products in Travel & Tourism – Impacts, Management Practices and Recommendations. Nairobi. ISBN No: 978-92-807-3869-8: 1–44

    Google Scholar 

  16. Sharma A (2017) A Review on the Effect of Organic and Chemical Fertilizers on Plants. Int J Res Appl Sci Eng Technol V (II):677–680.

    Google Scholar 

  17. Sharma N, Singhvi R (2017) Effects of Chemical Fertilizers and Pesticides on Human Health and Environment: A Review. Int J Agric Environ Biotechnol 10(6):675–679

    Article  Google Scholar 

  18. Parte V, Solanki VK, Kujur A, Ranawat JS (2019) Is the rice cultivation in west Bengal sustainable? 2 International Conference “Food Security, Nutrition and Sustainable Agriculture – Emerging Technologies” Agriculture importance in global climate change. Journal of Pharmacognosy and Phytochemistry SP1: 132–137

    Google Scholar 

  19. Gautam RK, Sharma SK, Mahiya S, Chattopadhyaya MC (2015) CHAPTER 1. Contamination of Heavy Metals in Aquatic Media: Transport, Toxicity and Technologies for Remediation. Heavy Met Water. ISBN: 978-1-84973-885-9:1–24.

    Google Scholar 

  20. Masindi V, Muedi KL (2018) Environmental contamination by heavy metals. Heavy metals, eds R. Chamy, F. Rosenkranz (Rijeka: InTech Open) 10(1):115–132

    Google Scholar 

  21. Iglesias J, Martínez-Salazar I, Maireles-Torres P, Martin Alonso D, Mariscal R, López Granados M (2020) Advances in catalytic routes for the production of carboxylic acids from biomass: A step forward for sustainable polymers. Chem Soc Rev 49:5704–5771.

    Article  CAS  Google Scholar 

  22. Govind P, Madhuri S (2014) Heavy metals causing toxicity in humans, animals and environment. Res J Anim Vet Fish Sci 2(2), 17–23

    Google Scholar 

  23. Gimeno-García E, Andreu V, Boluda R (1996) Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environ Pollut 92(1):19–25

    Article  Google Scholar 

  24. Stadler Bernhard M and de Vries Johannes G (2021) Chemical upcycling of polymers. Phil. Trans. R. Soc. A. 379:20200341.

    Article  CAS  Google Scholar 

  25. Varsha G (2013) Mammalian Feces as Bio-Indicator of Heavy Metal contamination in Bikaner. Res J Anim Vet Fish Sci 1(5):10–15

    Google Scholar 

  26. Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ (2021) Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 9(3):1–34

    Article  Google Scholar 

  27. Turbé A, De Toni A, Benito P, Lavelle P, Lavelle P, Ruiz N, Van der Putten W, Labouze E, Mudgal S (2010) Soil biodiversity: functions, threats and tools for policy makers. Bio Intelligence Service, IRD, and NIOO, Report for European Commission, DG Environment.

    Google Scholar 

  28. OECD (2020) Biodiversity and the economic response to COVID-19: Ensuring a green and resilient recovery. Tackling Coronavirus Contrib to a Glob Effort 1–26

    Google Scholar 

  29. Burgos N, Valdés A, Jiménez A (2016) Valorization of agricultural wastes for the production of protein-based biopolymers. J Renew Mater 4(3):165–177.

    Article  CAS  Google Scholar 

  30. Xia Q, Chen C, Yao Y, Li J, He S, Zhou Y, Li T, Pan X, Yao Y, Hu L (2021) A strong, biodegradable and recyclable lignocellulosic bioplastic. Nat Sustain 4(7):627–635.

    Article  Google Scholar 

  31. Wang Z, Ganewatta MS, Tang C (2020) Sustainable polymers from biomass: Bridging chemistry with materials and processing. Prog Polym Sci 101:1–41

    Article  Google Scholar 

  32. Hong M, Chen EYX (2019) Future Directions for Sustainable Polymers. Trends Chem 1(2):148–151

    Article  CAS  Google Scholar 

  33. Di Bartolo A, Infurna G, Dintcheva NT (2021) A review of bioplastics and their adoption in the circular economy. Polymers (Basel) 13(8), 1229:1–26

    Google Scholar 

  34. Bioplastics Magazine (2017) Bioplastics: a growing success. In: bioplastics Mag. https://www.bioplasticsmagazine.com/en/news/meldungen/04122017-Bioplastics-a-growing-success.php (Accessed 04/12/2017)

  35. Zhang X, Fevre M, Jones GO, Waymouth RM (2018) Catalysis as an Enabling Science for Sustainable Polymers. Chem Rev 118(2):839–885.

    Article  CAS  Google Scholar 

  36. Miller SA (2014) Sustainable polymers: Replacing polymers derived from fossil fuels. Polym Chem 5(9):3117–3118.

    Article  CAS  Google Scholar 

  37. Zhong Y, Godwin P, Jin Y, Xiao H (2020) Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Adv Ind Eng Polym Res 3(1):27–35.

    Google Scholar 

  38. European Bioplastics (2020) Bioplastics market data 2020. New market data: The positive trend for the bioplastics industry remains stable. Report for European Bioplastics, DG Environment.

    Google Scholar 

  39. European Bioplastics (2018) Bioplastics market data 2018. Global production capacities of bioplastics 2018–2023. Report for European Bioplastics, DG Environment.

    Google Scholar 

  40. Thakur S, Chaudhary J, Sharma B, Verma A, Tamulevicius S, Thakur V, Kumar (2018) Sustainability of bioplastics: Opportunities and challenges. Curr Opin Green Sustain Chem 13:251–287.

    Google Scholar 

  41. Ottoni BL, Deus RM, Gobbo Junior JA, José AC, Ângela MG, Rosane AG (2018) Communication and Biodegradable Packaging Relationship: A Paradigm for Final Disposal. J Appl Packag Res 10(1):1–27

    Google Scholar 

  42. Abioye OP, Abioye AA, Afolalu SA, Ongbali SO (2018) A review of biodegradable plastics in Nigeria. Int J Mech Eng Technol 9(10):1172–1185

    Google Scholar 

  43. Janczak K, Dąbrowska GB, Raszkowska-Kaczor A, Kaczor D, Hrynkiewicz K, Richert A l (2020) Biodegradation of the plastics PLA and PET in cultivated soil with the participation of microorganisms and plants. Int Biodeterior Biodegrad 155: 105087

    Google Scholar 

  44. Hottle TA, Bilec MM, Landis AE (2013) Sustainability assessments of bio-based polymers. Polym Degrad Stab 98(9):1898–1907.

    Article  CAS  Google Scholar 

  45. Ibrahim RK, Hayyan M, AlSaadi MA, Hayyan A, Ibrahim S (2016) Environmental application of nanotechnology: air, soil, and water. Environ Sci Pollut Res 23(14):13754–13788.

    Article  CAS  Google Scholar 

  46. Thakur S, Verma A, Sharma B, Chaudhary J, Tamulevicius S, Thakur VK (2018) Recent developments in recycling of polystyrene based plastics. Curr Opin Green Sustain Chem 13:32–38.

    Article  Google Scholar 

  47. Thakur S, Govender PP, Mamo MA, Tamulevicius S, Thakur VK (2017) Recent progress in gelatin hydrogel nanocomposites for water purification and beyond. Vacuum 146:396–408.

    Article  CAS  Google Scholar 

  48. Emadian SM, Onay TT, Demirel B (2017) Biodegradation of bioplastics in natural environments. Waste Manag 59:526–536.

    Article  CAS  Google Scholar 

  49. Meeks D, Hottle T, Bilec MM, Landis AE (2015) Compostable biopolymer use in the real world: Stakeholder interviews to better understand the motivations and realities of use and disposal in the US. Resour Conserv Recycl 105:134–142.

    Article  Google Scholar 

  50. Ibbrucker C (2018) How much land do we really need to produce bio-based plastics? European Bioplastics https://www.european-bioplastics.org/how-much-land-do-we-really-need-to-produce-bio-based-plastics/ (Accessed 28/02/2018)

  51. European Bioplastics (2017) Global market for bioplastics to grow by 20 percent https://www.european-bioplastics.org/global-market-for-bioplastics-to-grow-by-20-percent/ (Accessed 27/11/2017)

  52. Tosin M, Pischedda A, Degli-Innocenti F (2019) Biodegradation kinetics in soil of a multi-constituent biodegradable plastic. Polym Degrad Stab 166:213–218.

    Article  CAS  Google Scholar 

  53. Folino A, Karageorgiou A, Calabrò PS, Komilis D (2020) Biodegradation of wasted bioplastics in natural and industrial environments: A review. Sustain 12(15):1–37.

    Google Scholar 

  54. Zimmermann L, Dombrowski A, Völker C, Wagner M (2020) Are bioplastics and plant-based materials safer than conventional plastics? In vitro toxicity and chemical composition. Environ Int 145:106066

    Article  CAS  Google Scholar 

  55. Wichert F (2018) Bioplastics: An Eco-Friendly Alternative to Conventional Plastic? https://en.reset.org/knowledge/bioplastics-eco-friendly-alternative-conventional-plastic-01202019 (Accessed 08/2018)

  56. Moshood TD, Nawanir G, Mahmud F, Mohamad F, Ahmad MH, Ghani AA (2021) Expanding policy for biodegradable plastic products and market dynamics of bio-based plastics: Challenges and opportunities. Sustain 13:6170

    Article  CAS  Google Scholar 

  57. Gautam SP, Pollution C, Board C, Environment MOF (2009) Bio-degradable Plastics- Impact on Environment CENTRAL POLLUTION CONTROL BOARD. Control 2009:1–46

    Google Scholar 

  58. Ortiz HML, Salinas ES, Gonzalez ED, Godnez MLC (2013). Pesticide biodegradation: mechanisms, genetics and strategies to enhance the process. Biodegradation-Life of Science, eds R. Chamy, F. Rosenkranz (Rijeka: InTech Open) 251–287

    Google Scholar 

  59. Sidhu GK, Singh S, Kumar V, Dhanjal DS, Datta S, Singh J (2019) Toxicity, monitoring and biodegradation of organophosphate pesticides: A review. Critical Reviews in Environmental Science and Technology 49(13): 1135–1187

    Article  CAS  Google Scholar 

  60. Sarkar S, Skalicky M, Hossain A, Brestic M, Saha S, Garai S, Ray K, Rahmachari K (2020) Management of crop residues for improving input use efficiency and gricultural sustainability. Sustain 12(23):1–24.

    Google Scholar 

  61. Bandopadhyay S, Martin-Closas L, Pelacho AM, DeBruyn JM (2018) Biodegradable Plastic Mulch Films: Impacts on Soil Microbial Communities and Ecosystem Functions. Front Microbiol. 26; 9:819

    Google Scholar 

  62. Deng L, Meng X, Yu R, Wang Q (2019) Assessment of the effect of mulch film on crops in the arid agricultural region of China under future climate scenarios. Water (Switzerland) 11(9):1–16

    Google Scholar 

  63. Jat SL, Parihar CM, Singh AK, Nayak HS, Meena BR, Kumar B, Parihar MD, Jat ML (2019) Differential response from nitrogen sources with and without residue management under conservation agriculture on crop yields, water-use and economics in maize-based rotations. F Crop Res 236:96–110.

    Article  Google Scholar 

  64. Muchanga RA, Araki H (2021). Cover Crop Residue Management for Effective Use of Mineralized Nitrogen in Greenhouse Tomato Production. Nitrogen in Agriculture - Physiological, Agricultural and Ecological Aspects, eds Ohyama T, Inubushi K (Rijeka: InTech Open) 1–18

    Google Scholar 

  65. Lu X (2020) A meta-analysis of the effects of crop residue return on crop yields and water use efficiency. PLoS One 15(4):1–18.

    Article  Google Scholar 

  66. Adimassu Z, Alemu G, Tamene L (2019) Effects of tillage and crop residue management on runoff, soil loss and crop yield in the Humid Highlands of Ethiopia. Agric Syst 168:11–18.

    Article  Google Scholar 

  67. Ghosh K, Sarkar S, Brahmachari K, Porel S (2018) Standardizing Row Spacing of Vetiver for River Bank Stabilization of Lower Ganges. Curr J Appl Sci Technol 26(2):1–12.

    Article  Google Scholar 

  68. Saha RR, Rahman MA, Rahman MH, Mainuddi, M, Bell RW, Gaydon DS (2019) Cropping System Intensification under Rice Based System for Increasing Crop Productivity in Salt-Affected Coastal Zones of Bangladesh. Journal of Indian Society of Coastal Agricultural Research, 37(2), 72–81.

    Google Scholar 

  69. Zhao Y, Pang H, Wang J, Huo L, Li Y (2014) Effects of straw mulch and buried straw on soil moisture and salinity in relation to sunflower growth and yield. F Crop Res 161:16–25.

    Article  Google Scholar 

  70. Whalen JK, Gul S, Poirier V, et al (2014) Transforming plant carbon into soil carbon: Process-level controls on carbon sequestration. Can J Plant Sci 94:1065–1073. https://doi.org/10.4141/CJPS2013-145

    Article  CAS  Google Scholar 

  71. Kakde S V (2017) Biodegradation of Agricultural Residues and Oily Waste, Their Effect on Vegetable Crop Yield. Int J Sci Res 94(6):681–687

    Google Scholar 

  72. Schaefer M, Juliane F (2007) The influence of earthworms and organic additives on the biodegradation of oil contaminated soil. Appl Soil Ecol 36(1):53–62.

    Article  Google Scholar 

  73. Liu C, Luan P, Li Q, Cheng Z, Sun X, Cao D, Zhu H (2020) Biodegradable, Hygienic, and Compostable Tableware from Hybrid Sugarcane and Bamboo Fibers as Plastic Alternative. Matter 3(6):2066–2079.

    Article  Google Scholar 

  74. Vergeynst L, Wegeberg S, Aamand J, Lassen P, Gosewinke U, Fritt-Rasmussen J, Gustavson K, Mosbech A (2018) Biodegradation of marine oil spills in the Arctic with a Greenland perspective. Sci Total Environ 626:1243–1258

    Article  CAS  Google Scholar 

  75. Loh A, Shankar R, Ha SY, An JG, Yim UH (2019) Suspended particles enhance biodegradation of oil in sea. Sci Total Environ 685:324–331

    Article  CAS  Google Scholar 

  76. McGenity TJ, Folwell BD, McKew BA, Sanni GO (2012) Marine crude-oil biodegradation: a central role for interspecies interactions. Aquat Biosyst 8(1):1–19

    Article  Google Scholar 

  77. Itopf (2002) Fate of marine oil spills. Itopf 2:1–8

    Google Scholar 

  78. Chikere CB, Obieze CC, Chikere BO (2020) Biodegradation of artisanally refined diesel and the influence of organic wastes on oil-polluted soil remediation. Sci African 8:e00385.

    Article  Google Scholar 

  79. Pielech-Przybylska K, Ziemiński K, Szopa JS (2006) Acetone biodegradation in a trickle-bed biofilter. Int Biodeterior Biodegrad 57(4):200–206.

    Article  CAS  Google Scholar 

  80. Wang Z, Pei J, Zhang JS (2014) Experimental investigation of the formaldehyde removal mechanisms in a dynamic botanical filtration system for indoor air purification. J Hazard Mater 280:235–243.

    Article  CAS  Google Scholar 

  81. Hilding BT (2017) Researchers develop environmentally friendly, soy air filter. http://sustainablefootprint.org/nederlands-environmentally-friendly-soy-air-filter/ (Accessed 12/01/2017)

  82. Zheng C, Zhao L, Zhou X, Fu Z and Li A (2013). Treatment Technologies for Organic Wastewater. Water Treatment, eds Elshorbagy W, Chowdhury RK (Rijeka: InTech Open) 250–286

    Google Scholar 

  83. Hatzinger PB (2005) Perchlorate biodegradation for water treatment. Environ Sci Technol 39(11):1–9

    Article  Google Scholar 

  84. Rodríguez-Calvo A, Silva-Castro GA, Olicón-Hernández DR, González-López J, Calvo C (2020) Biodegradation and Absorption Technology for Hydrocarbon-Polluted Water Treatment. Appl Sci 10(3):841

    Article  Google Scholar 

  85. Gaind S, Nain L, Patel VB (2009) Quality evaluation of co-composted wheat straw, poultry droppings and oil seed cakes. Biodegradation 20(3):307–317.

    Article  Google Scholar 

  86. Tachibana Y, Maeda T, Ito O, Maeda Y, Kunioka M (2009) Utilization of a biodegradable mulch sheet produced from poly(lactic acid)/Ecoflex®/modified starch in Mandarin orange groves. Int J Mol Sci 10(8):3599–3615

    Article  CAS  Google Scholar 

  87. Qi Y, Ossowicki A, Yang X, Huerta Lwanga E, Dini-Andreote F, Geissen V, Garbeva P (2020) Effects of plastic mulch film residues on wheat rhizosphere and soil properties. J Hazard Mater 387:121711.

    Article  CAS  Google Scholar 

  88. Briassoulis D, Dejean C (2010) Critical review of norms and standards for biodegradable agricultural plastics part I. Biodegradation in soil. J Polym Environ 18(3):384–400.

    Article  CAS  Google Scholar 

  89. Girard M, Palacios JH, Belzile M, Godbout S, Pelletier F (2013) Biodegradation in Animal Manure Management. Biodegradation - Engineering and Technology, eds Chamy R, Rosenkranz F (Rijeka: InTech Open) 252–274

    Google Scholar 

  90. Saccá ML, Caracciolo AB, Lenola M Di, Grenni P (2017) Sustainability in Plant and Crop Protection. Soil Biol Communities Ecosyst Resil. ISBN 978-3-319-63336-7:345

    Google Scholar 

  91. Hotel F, Baldi M, Nazionale C (2016) Italian - Egyptian Workshop on Sciences and Technologies applied to Cultural Heritage I Italian - Egyptian Workshop on Sciences and Technologies applied to Cultural Heritage I. 1–32

    Google Scholar 

  92. Dodds B, In S, Science A (2018) Managing soil health for sustainable agriculture. Manag soil Heal Sustain Agric ISBN 978-3-319-63336-7:345. 1:1–442

    Google Scholar 

  93. Terzaghi E, De Nicola F, Cerabolini BEL, Posada-Baquero R, Ortega-Calvo J J, Di Guardo A (2020) Role of photo- and biodegradation of two PAHs on leaves: Modelling the impact on air quality ecosystem services provided by urban trees. Sci Total Environ 739:139893.

    Article  CAS  Google Scholar 

  94. Terzaghi E, Zacchello G, Scacchi M, Raspa G, Jones KC, Cerabolini B, Di Guardo A 2015) Towards more ecologically realistic scenarios of plant uptake modelling for chemicals: PAHs in a small forest. Sci Total Environ 505:329–337.

    Article  CAS  Google Scholar 

  95. Writer C (2019) How bioplastics and biodegradable plastics are transforming packaging. https://ecofriend.com/how-bioplastics-and-biodegradable-plastics-are-transforming-packaging.html (Accessed 31/10/2019)

  96. Wróblewska-Krepsztul J, Rydzkowski T, Borowski G, Szczypiński M, Klepka T, Thakur VK (2018) Recent progress in biodegradable polymers and anocomposite-based packaging materials for sustainable environment. Int J Polym Anal Charact 23(4):383–395.

    Article  Google Scholar 

  97. Jia MZ (2020) Biodegradable Plastics: Breaking Down the Facts. Production, Composition and Environmental Impact. Greenpeace East Asia 1–57

    Google Scholar 

  98. Sedayu BB (2018) Seaweed, Indonesia’s answer to the global plastic crisis. In: Conversat. https://theconversation.com/seaweed-indonesias-answer-to-the-global-plastic-crisis-95587 (Accessed 04/06/2018)

  99. Gray A (2018) This plastic bag is 100% biodegradable. World Econ Forum https://www.weforum.org/agenda/2018/05/this-plastic-bag-is-100-biodegradable-and-made-of-plants/ (Accessed 04/05/2018)

  100. Heather Clancy (2017) This edible packaging will make you reconsider seaweed | Greenbiz. https://www.greenbiz.com/article/edible-packaging-will-make-you-reconsider-seaweed (Accessed 15/10/2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esraa E. Ammar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ammar, E.E. (2022). Environmental Impact of Biodegradation. In: Ali, G.A.M., Makhlouf, A.S.H. (eds) Handbook of Biodegradable Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-83783-9_27-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83783-9_27-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83783-9

  • Online ISBN: 978-3-030-83783-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics