Skip to main content
Log in

Identification and Validation of Functional miRNAs and Their Main Targets in Sorghum bicolor

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are typically non-coding RNAs of 18–26 nucleotides (nts) that are produced endogenously and regulated post-transcriptionally through degradation or translational repression. Since miRNAs are evolutionarily conserved, their preservation is essential for important regulatory functions in plant development, growth, and responses to environmental stress. Sorghum bicolor (sbi) is a valuable food and fodder crop which is grown worldwide. A range of sbi miRNAs were identified so far as being connected to plant development and stress responses. Herein, we employed a variety of bioinformatics tools for miRNA profiling in sbi and a PCR-based platform for the validation of these miRNAs. In total, 74 new conserved sbi miRNAs from 52 miRNA families have been predicted. Using the psRNA Target method, 10613 different protein targets of these predicted miRNAs have been attained. These targets include 54 GO-terms which have substantial targets in the biological, molecular, and cellular processes. We particularly found that the sbi-miR1861c and sbi-miR5050 are involved to regulate sulphur compound biosynthetic process, while the significant spliceosomal complex is regulated by sbi-miR815b and sbi-miR7768b. Also, we report that the pre-ribosome, electron transport chain, cell communication, cellular respiration, protein localization, and photosynthesis are controlled by sbi-miR2907b, sbi-miR530, sbi-miR7749, sbi-miR1858a, sbi-mi7729a, and sbi-miR417, respectively. The identification and validation of these novel sbi miRNAs shall contribute a lot in improving the crop yield and ensure sustainable agriculture.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Almatroudi, A. (2022). Non-coding RNAs in tuberculosis epidemiology: Platforms and approaches for investigating the Genome’s dark matter. International Journal of Molecular Sciences, 23, 4430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Md Yusof, K., Rosli, R., Abdullah, M., & Avery-Kiejda, K. A. (2020). The roles of non-coding RNAs in tumor-associated lymph angiogenesis. Cancers, 12, 3290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Achakzai, H. K., Barozai, M. Y. K., Din, M., Baloch, I. A., & Achakzai, A. K. K. (2018). Identification and annotation of newly conserved microRNAs and their targets in wheat (Triticum aestivum L.). PLoS ONE, 13, e0200033.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rani, V., & Sengar, R. S. (2022). Biogenesis and mechanisms of microRNA-mediated gene regulation. Biotechnology and Bioengineering, 119, 685–692.

    Article  CAS  PubMed  Google Scholar 

  5. Hajieghrari, B., & Farrokhi, N. (2022). Plant RNA-mediated gene regulatory network. Genomics, 114, 409–442.

    Article  CAS  PubMed  Google Scholar 

  6. Rojas-Pirela, M., Andrade-Alviarez, D., Medina, L., Castillo, C., Liempi, A., Guerrero-Muñoz, J., Ortega, Y., Maya, J. D., Rojas, V., Quiñones, W., & Michels, P. A. (2022). MicroRNAs: Master regulators in host–parasitic protist interactions. Open Biology, 12, 210395.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kirchner, B. (2022). Functional importance of intra-and extracellular microRNAs and their isoforms in blood and milk (Doctoral dissertation, Technische Universität München).

  8. Barozai, M. Y. K., Irfan, M., Yousaf, R., Ali, I., Qaisar, U., Maqbool, A., Zahoor, M., Rashid, B., Hussnain, T., & Riazuddin, S. (2008). Identification of micro-RNAs in cotton. Plant Physiology and Biochemistry, 46, 739–751.

    Article  Google Scholar 

  9. Din, M., Barozai, M. Y. K., & Baloch, I. A. (2016). Profiling and annotation of microRNAs and their putative target genes in chilli (Capsicum annuum L.) using ESTs. Gene Reports, 5, 62–69.

    Article  Google Scholar 

  10. Xie, F., Frazier, T. P., & Zhang, B. (2010). Identification and characterization of microRNAs and their targets in the bioenergy plant switchgrass (Panicum virgatum). Planta, 232, 417–434.

    Article  CAS  PubMed  Google Scholar 

  11. Barozai, M. Y. K., Ye, Z., Sangireddy, S. R., & Zhou, S. (2018). Bioinformatics profiling and expressional studies of microRNAs in root, stem and leaf of the bioenergy plant switchgrass (Panicum virgatum L.) under drought stress. Agri Gene, 8, 1–8.

    Article  Google Scholar 

  12. Zhang, B., Pan, X., & Stellwag, E. J. (2008). Identification of soybean microRNAs and their targets. Planta, 229, 161–182.

    Article  CAS  PubMed  Google Scholar 

  13. Baloch, I. A., Barozai, M. Y. K., & Din, M. (2018). Bioinformatics prediction and annotation of cherry (Prunus avium L.) microRNAs and their targeted proteins. Turkish Journal of Botany, 42, 382–399.

    Article  CAS  Google Scholar 

  14. Din, M., & Barozai, M. Y. K. (2014). Profiling microRNAs and their targets in an important fleshy fruit: Tomato (Solanum lycopersicum). Gene, 535, 198–203.

    Article  CAS  PubMed  Google Scholar 

  15. Barozai, M. Y. K., Baloch, I. A., & Din, M. (2012). Identification of MicroRNAs and their targets in Helianthus. Molecular Biology Reports, 39, 2523–2532.

    Article  CAS  PubMed  Google Scholar 

  16. Barozai, M. Y. K., Qasim, M., Din, M., & Achakzai, A. K. K. (2018). An update on the microRNAs and their targets in unicellular red alga Porphyridium cruentum. Pakistan Journal of Botany, 50, 817–825.

    Google Scholar 

  17. Gul, Z., Barozai, M. Y. K., & Din, M. (2017). In-silico based identification and functional analyses of miRNAs and their targets in Cowpea (Vigna unguiculata L.). Aims Genetics, 4, 138–165.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Baloch, I. A., Barozai, M. Y. K., Din, M., & Achakzai, A. K. K. (2015). Computational identification of 18 microRNAs and their targets in three species of rose. Pakistan Journal of Botany, 47, 1281–1285.

    CAS  Google Scholar 

  19. Sohani, S., Chouhan, R., Birla, D., & Patel, L. (2022). Impact of quantities of nitrogen application on infestation of sorghum insect pest. Research Review International Journal of Multidisciplinary, 7, 62–67.

    Article  Google Scholar 

  20. Gyawali, B., Barozai, M. Y. K., & Aziz, A. N. (2021). Comparative expression analysis of microRNAs and their targets in emerging bio-fuel crop sweet sorghum (Sorghum bicolor L.). Plant Gene, 26, 100274.

    Article  CAS  Google Scholar 

  21. Katiyar, A., Smita, S., Muthusamy, S. K., Chinnusamy, V., Pandey, D. M., & Bansal, K. C. (2015). Identification of novel drought-responsive microRNAs and trans-acting siRNAs from Sorghum bicolor (L.) Moench by high-throughput sequencing analysis. Frontiers in Plant Science, 6, 506.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    Article  CAS  PubMed  Google Scholar 

  23. Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31, 3406–3415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Paolacci, A. R., Tanzarella, O. A., Porceddu, E., & Ciaffi, M. (2009). Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Molecular Biology, 10, 1–27.

    Article  Google Scholar 

  25. Ambros, V., & Lee, R. C. (2004). Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning. Methods in Molecular Biology, 265, 131–158.

    CAS  PubMed  Google Scholar 

  26. Crooks, G. E., Hon, G., Chandonia, J. M., & Brenner, S. E. (2004). WebLogo: A sequence logo generator. Genome research, 14, 1188–1190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dai, X., & Zhao, P. X. (2011). psRNATarget: A plant small RNA target analysis server. Nucleic Acids Research, 39, W155–W159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tian, T., Liu, Y., Yan, H., You, Q., Yi, X., Du, Z., Xu, W., & Su, Z. (2017). agriGO v2. 0: A GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Research, 45, W122–W129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wahid, H. A., Barozai, M. Y. K., & Din, M. (2016). Functional characterization of fifteen hundred transcripts from Ziarat juniper (Juniperus excelsa M. Bieb). Advancement in Life Sciences, 4, 20–26.

    Google Scholar 

  30. Jahan, S., Barozai, M. Y. K., Din, M., Achakzai, H., & Sajjad, A. (2017). Expressional studies of microRNAs in hepatitis B patients of Quetta, Pakistan. Pure and Applied Biology, 6, 1044–1052.

    Article  CAS  Google Scholar 

  31. Ghani, A., Din, M., & Barozai, M. Y. K. (2018). Convergence and divergence studies of plant precursor microRNAs. Pakistan Journal of Botany, 50, 1085–1091.

    CAS  Google Scholar 

  32. Barozai, M. Y. K., & Din, M. (2017). Initial screening of plant most conserved MicroRNAs targeting infectious viruses: HBV and HCV, In 2017 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 192–196.

  33. Shah, S. Q., Barozai, M. Y. K., Din, M., Baloch, I. A., & Wahid, H. A. (2021). 15 RNA secondary structure analysis for abiotic stress resistant and housekeeping genes in Arabidopsis thaliana and Oryza sativa. Pure and Applied Biology, 5, 476–482.

    Google Scholar 

  34. Ambros, V., Bartel, B., Bartel, D. P., Burge, C. B., Carrington, J. C., Chen, X., Dreyfuss, G., Eddy, S. R., Griffiths-Jones, S. A. M., Marshall, M., & Matzke, M. (2003). A uniform system for microRNA annotation. RNA, 9, 277–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bibi, F., Barozai, M. Y. K., & Din, M. (2017). Bioinformatics profiling and characterization of potential microRNAs and their targets in the genus Coffea. Turkish Journal of Agriculture and Forestry, 41, 191–200.

    Article  CAS  Google Scholar 

  36. Gasparis, S., Yanushevska, Y., & Nadolska-Orczyk, A. (2017). Bioinformatic identification and expression analysis of new microRNAs from wheat (Triticum aestivum L.). Acta Physiologiae Plantarum, 39, 1–13.

    Article  CAS  Google Scholar 

  37. Achakzai, H. K., Barozai, M. Y. K., Achakzai, A. K. K., Asghar, M., & Din, M. (2019). Profiling of 21 novel microRNA clusters and their targets in an important grain: Wheat (Triticum aestivum L.). Pakistan Journal of Botany, 51, 133–142.

    Article  CAS  Google Scholar 

  38. Eskandarynasab, S., Roudbari, Z., & Bahreini Behzadi, M. R. (2020). Clustering based on the ontology of microRNAs target genes affecting milk production. Journal of Animal Environment, 12, 435–440.

    Google Scholar 

Download references

Acknowledgements

The authors are particularly grateful to University of Balochistan, Quetta, Pakistan, and Hazara University, Mansehra, Pakistan for approving this project and facilitating the core facilities.

Funding

This research work was supported by Hazara University (HU), Mansehra, Pakistan, under number HU/699/2021.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: WR, FM; writing-original draft preparation: WR, and IR; methodology, software, validation, formal analysis, investigation, and data curation: AB, FM, YK, AS; visualization, supervision, and project administration: AS; resources, writing-review, editing, funding acquisition, and submission: WR, DAA, ASA, SMA, FM. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Wajid Rehman or Farid Menaa.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 35 KB)

Supplementary file2 (DOCX 34 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baqi, A., Samiullah, Rehman, W. et al. Identification and Validation of Functional miRNAs and Their Main Targets in Sorghum bicolor. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00988-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00988-5

Keywords

Navigation