Skip to main content

Advertisement

Log in

Exosomes for CRISPR-Cas9 Delivery: The Cutting Edge in Genome Editing

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Gene mutation correction was challenging until the discovery of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas). CRISPR is a new era for genome modification, and this technology has bypassed the limitations of previous methods such as zinc-finger nuclease and transcription activator-like effector nuclease. Currently, this method is becoming the method of choice for gene-editing purposes, especially therapeutic gene editing in diseases such as cardiovascular, neurological, renal, genetic, optical, and stem cell, as well as blood disorders and muscular degeneration. However, finding the optimum delivery system capable of carrying this large complex persists as the main challenge of this technology. Therefore, it would be ideal if the delivery vehicle could direct the introduction of editing functions to specific cells in a multicellular organism. Exosomes are membrane-bound vesicles with high biocompatibility and low immunogenicity; they offer the best and most reliable way to fill the CRISPR/Cas9 system delivery gap. This review presents the current evidence on the molecular mechanisms and challenges of CRISPR/Cas9-mediated genome modification. Also, the role of CRISPR/Cas9 in the development of treatment and diagnosis of numerous disorders, from malignancies to viral infections, has been discussed. Lastly, the focus is on new advances in exosome-delivery technologies that may play a role in CRISPR/Cas9 delivery for future clinical settings.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Kim, T. H., & Lee, S. W. (2022). Therapeutic application of genome editing technologies in viral diseases. International Journal of Molecular Sciences., 23(10), 5399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bhattacharjee, G., et al. (2020). CRISPR technology for genome editing. Precision medicine for investigators, practitioners and providers (pp. 59–69). Elsevier.

    Chapter  Google Scholar 

  3. Li, H., et al. (2020). Applications of genome editing technology in the targeted therapy of human diseases: Mechanisms, advances and prospects. Signal transduction and targeted therapy, 5(1), 1.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6), 1262–1278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Newsom, S., Parameshwaran, H. P., Martin, L., & Rajan, R. (2021). The CRISPR-Cas mechanism for adaptive immunity and alternate bacterial functions fuels diverse biotechnologies. Frontiers in Cellular and Infection Microbiology, 10, 619763.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Redman, M., et al. (2016). What is CRISPR/Cas9? Archives of Disease in Childhood-Education and Practice, 101(4), 213–215.

    Article  Google Scholar 

  7. Xu, Y., & Li, Z. (2020). CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Computational and Structural Biotechnology Journal., 18, 2401–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang, J., Zhou, Y., Li, J., Lu, A., & Liang, C. (2022). CRISPR/Cas systems: Delivery and application in gene therapy. Frontiers in Bioengineering and Biotechnology., 22(10), 942325.

    Article  Google Scholar 

  9. Li, Y., Li, S., Wang, J., & Liu, G. (2019). CRISPR/Cas systems towards next-generation biosensing. Trends in Biotechnology, 37(7), 730–743.

    Article  PubMed  Google Scholar 

  10. He, Y., Yan, W., Long, L., Dong, L., Ma, Y., Li, C., Xie, Y., Liu, N., Xing, Z., Xia, W., & Li, F. (2023). The CRISPR/Cas system: A customizable toolbox for molecular detection. Genes, 14(4), 850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Frangoul, H., Altshuler, D., Cappellini, M. D., Chen, Y. S., Domm, J., Eustace, B. K., Foell, J., de la Fuente, J., Grupp, S., Handgretinger, R., & Ho, T. W. (2021). CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. New England Journal of Medicine, 384(3), 252–60.

    Article  CAS  PubMed  Google Scholar 

  12. Liu, W., Li, L., Jiang, J., Wu, M., & Lin, P. (2021). Applications and challenges of CRISPR-Cas gene-editing to disease treatment in clinics. Precision Clinical Medicine., 4(3), 179–91.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Duan, L., et al. (2021). Exosomes as targeted delivery platform of CRISPR/Cas9 for therapeutic genome editing. ChemBioChem, 22(24), 3360–3368.

    Article  CAS  PubMed  Google Scholar 

  14. Johnsen, K. B., et al. (2014). A comprehensive overview of exosomes as drug delivery vehicles—endogenous nanocarriers for targeted cancer therapy. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1846(1), 75–87.

    Article  CAS  PubMed  Google Scholar 

  15. Trams, E. G., et al. (1981). Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochimica et Biophysica Acta (BBA)-Biomembranes, 645(1), 63–70.

    Article  CAS  PubMed  Google Scholar 

  16. Johnstone, R. M., et al. (1987). Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). Journal of Biological Chemistry, 262(19), 9412–9420.

    Article  CAS  PubMed  Google Scholar 

  17. Shao, J., Zaro, J., & Shen, Y. (2020). Advances in exosome-based drug delivery and tumor targeting: from tissue distribution to intracellular fate. International Journal of Nanomedicine, 15, 9355–9371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ishino, Y., et al. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169(12), 5429–5433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mojica, F. J., et al. (2000). Biological significance of a family of regularly spaced repeats in the genomes of Archaea, bacteria and mitochondria. Molecular Microbiology, 36(1), 244–246.

    Article  CAS  PubMed  Google Scholar 

  20. Bolotin, A., et al. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 151(8), 2551–2561.

    Article  CAS  PubMed  Google Scholar 

  21. Tang, H., Zhao, X., & Jiang, X. (2021). Synthetic multi-layer nanoparticles for CRISPR-Cas9 genome editing. Advanced Drug Delivery Reviews, 168, 55–78.

    Article  CAS  PubMed  Google Scholar 

  22. Barrangou, R., et al. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819), 1709–1712.

    Article  CAS  PubMed  Google Scholar 

  23. Brouns, S. J., et al. (2008). Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 321(5891), 960–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marraffini, L. A., & Sontheimer, E. J. (2008). CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, 322(5909), 1843–1845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marraffini, L. A., & Sontheimer, E. J. (2010). CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nature Reviews Genetics, 11(3), 181–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Deltcheva, E., et al. (2011). CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 471(7340), 602–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haft, D. H., et al. (2005). A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Computational Biology, 1(6), e60.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Makarova, K. S., et al. (2011). Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology, 9(6), 467–477.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, F., Wen, Y., & Guo, X. (2014). CRISPR/Cas9 for genome editing: Progress, implications and challenges. Human Molecular Genetics, 23(R1), R40–R46.

    Article  CAS  PubMed  Google Scholar 

  30. Feng, Y., et al. (2021). Target binding and residence: A new determinant of DNA double-strand break repair pathway choice in CRISPR/Cas9 genome editing. Journal of Zhejiang University-Science B, 22(1), 73–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jinek, M., et al. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mali, P., et al. (2013). RNA-guided human genome engineering via Cas9. Science, 339(6121), 823–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cong, L., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096.

    Article  PubMed  Google Scholar 

  35. Liu, C., et al. (2017). Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. Journal of Controlled release, 266, 17–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jiang, F., & Doudna, J. A. (2017). CRISPR–Cas9 structures and mechanisms. Annual review of Biophysics, 46, 505–529.

    Article  CAS  PubMed  Google Scholar 

  37. Cox, D. B. T., Platt, R. J., & Zhang, F. (2015). Therapeutic genome editing: Prospects and challenges. Nature Medicine, 21(2), 121–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sander, J. D., & Joung, J. K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 32(4), 347–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Abudayyeh, O. O., et al. (2017). RNA targeting with CRISPR–Cas13. Nature, 550(7675), 280–284.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Merkle, T., et al. (2019). Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Nature Biotechnology, 37(2), 133–138.

    Article  CAS  PubMed  Google Scholar 

  41. Tucker, B. A., et al. (2011). Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice. PLoS ONE, 6(4), e18992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Homma, K., et al. (2013). Developing rods transplanted into the degenerating retina of Crx-knockout mice exhibit neural activity similar to native photoreceptors. Stem Cells, 31(6), 1149–1159.

    Article  CAS  PubMed  Google Scholar 

  43. Liang, P., et al. (2015). CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein & Cell, 6(5), 363–372.

    Article  CAS  Google Scholar 

  44. Khan, S., et al. (2018). CRISPR/Cas9: The Jedi against the dark empire of diseases. Journal of Biomedical Science, 25(1), 1–18.

    Article  Google Scholar 

  45. Cai, L., et al. (2016). CRISPR-mediated genome editing and human diseases. Genes & Diseases, 3(4), 244–251.

    Article  Google Scholar 

  46. Kolli, N., et al. (2018). Application of the gene editing tool, CRISPR-Cas9, for treating neurodegenerative diseases. Neurochemistry International, 112, 187–196.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, H., et al. (2021). Interaction between Aβ and tau in the pathogenesis of Alzheimer’s disease. International Journal of Biological Sciences, 17(9), 2181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Park, H., et al. (2019). In vivo neuronal gene editing via CRISPR–Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nature Neuroscience, 22(4), 524–528.

    Article  CAS  PubMed  Google Scholar 

  49. He, G., et al. (2010). Gamma-secretase activating protein is a therapeutic target for Alzheimer’s disease. Nature, 467(7311), 95–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wong, E., et al. (2019). GSAP modulates γ-secretase specificity by inducing conformational change in PS1. Proceedings of the National Academy of Sciences, 116(13), 6385–6390.

    Article  CAS  Google Scholar 

  51. György, B., et al. (2018). CRISPR/Cas9 mediated disruption of the Swedish APP allele as a therapeutic approach for early-onset Alzheimer’s disease. Molecular Therapy-Nucleic Acids, 11, 429–440.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Nagata, K., et al. (2018). Generation of App knock-in mice reveals deletion mutations protective against Alzheimer’s disease-like pathology. Nature Communications, 9(1), 1–7.

    Article  Google Scholar 

  53. Lee, J. K., & Kim, N.-J. (2017). Recent advances in the inhibition of p38 MAPK as a potential strategy for the treatment of Alzheimer’s disease. Molecules, 22(8), 1287.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Karimian, A., et al. (2020). CRISPR/Cas9 novel therapeutic road for the treatment of neurodegenerative diseases. Life Sciences, 259, 118165.

    Article  CAS  PubMed  Google Scholar 

  55. Arias-Fuenzalida, J., et al. (2017). FACS-assisted CRISPR-Cas9 genome editing facilitates Parkinson’s disease modeling. Stem Cell Reports, 9(5), 1423–1431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Qing, X., et al. (2017). CRISPR/Cas9 and piggyBac-mediated footprint-free LRRK2-G2019S knock-in reveals neuronal complexity phenotypes and α-Synuclein modulation in dopaminergic neurons. Stem Cell Research, 24, 44–50.

    Article  CAS  PubMed  Google Scholar 

  57. Song, C., et al. (2019). Mechanistic interplay between autophagy and apoptotic signaling in endosulfan-induced dopaminergic neurotoxicity: Relevance to the adverse outcome pathway in pesticide neurotoxicity. Toxicological Sciences, 169(2), 333–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gordon, R., et al. (2016). Prokineticin-2 upregulation during neuronal injury mediates a compensatory protective response against dopaminergic neuronal degeneration. Nature Communications, 7(1), 1–18.

    Article  Google Scholar 

  59. Kempuraj, D., et al. (2013). Glia maturation factor induces interleukin-33 release from astrocytes: Implications for neurodegenerative diseases. Journal of Neuroimmune Pharmacology, 8(3), 643–650.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Selvakumar, G. P., et al. (2019). CRISPR/Cas9 editing of glia maturation factor regulates mitochondrial dynamics by attenuation of the NRF2/HO-1 dependent ferritin activation in glial cells. Journal of Neuroimmune Pharmacology, 14, 537–550.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wu, J., et al. (2018). Inhibition of TRPC1-dependent store-operated calcium entry improves synaptic stability and motor performance in a mouse model of Huntington’s disease. Journal of Huntington’s Disease, 7(1), 35–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee, J., et al. (2002). An upstream open reading frame impedes translation of the huntingtin gene. Nucleic Acids Research, 30(23), 5110–5119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kolli, N., et al. (2017). CRISPR-Cas9 mediated gene-silencing of the mutant huntingtin gene in an in vitro model of Huntington’s disease. International Journal of Molecular Sciences, 18(4), 754.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Chemello, F., Bassel-Duby, R., & Olson, E. N. (2020). Correction of muscular dystrophies by CRISPR gene editing. The Journal of Clinical Investigation, 130(6), 2766–2776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, J., et al. (2020). CRISPR/Cas9-mediated miR-29b editing as a treatment of different types of muscle atrophy in mice. Molecular Therapy, 28(5), 1359–1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Long, C., et al. (2016). Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science, 351(6271), 400–403.

    Article  CAS  PubMed  Google Scholar 

  67. Nelson, C. E., et al. (2016). In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science, 351(6271), 403–407.

    Article  CAS  PubMed  Google Scholar 

  68. Li, H. L., et al. (2015). Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Reports, 4(1), 143–154.

    Article  CAS  PubMed  Google Scholar 

  69. Men, K., et al. (2017). CRISPR/Cas9-mediated correction of human genetic disease. Science China Life Sciences, 60(5), 447–457.

    Article  CAS  PubMed  Google Scholar 

  70. Ousterout, D. G., et al. (2015). Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nature Communications, 6(1), 1–13.

    Article  Google Scholar 

  71. Xu, L., et al. (2016). CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Molecular Therapy, 24(3), 564–569.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Xiong, X., et al. (2016). CRISPR/Cas9 for human genome engineering and disease research. Annual Review of Genomics and Human Genetics, 17, 131–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Abboud, S., et al. (2007). Proprotein convertase subtilisin/kexin type 9 (PCSK9) gene is a risk factor of large-vessel atherosclerosis stroke. PLoS ONE, 2(10), e1043.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhang, L., et al. (2019). Triple-targeting delivery of CRISPR/Cas9 To reduce the risk of cardiovascular diseases. Angewandte Chemie International Edition, 58(36), 12404–12408.

    Article  CAS  PubMed  Google Scholar 

  75. Motta, B.M., et al., The impact of CRISPR/Cas9 technology on cardiac research: from disease modelling to therapeutic approaches. Stem cells international, 2017. 2017.

  76. Yamamoto, Y., et al. (2017). Allele-specific ablation rescues electrophysiological abnormalities in a human iPS cell model of long-QT syndrome with a CALM2 mutation. Human Molecular Genetics, 26(9), 1670–1677.

    Article  CAS  PubMed  Google Scholar 

  77. Rezaei, H., et al. (2020). Harnessing CRISPR/Cas9 technology in cardiovascular disease. Trends in Cardiovascular Medicine, 30(2), 93–101.

    Article  CAS  PubMed  Google Scholar 

  78. Limpitikul, W. B., et al. (2017). A precision medicine approach to the rescue of function on malignant calmodulinopathic long-QT syndrome. Circulation Research, 120(1), 39–48.

    Article  CAS  PubMed  Google Scholar 

  79. Zabaleta, N., et al. (2018). CRISPR/Cas9-mediated glycolate oxidase disruption is an efficacious and safe treatment for primary hyperoxaluria type I. Nature Communications, 9(1), 1–9.

    Article  Google Scholar 

  80. Humbert, O., Samuelson, C., & Kiem, H. P. (2021). CRISPR/Cas9 for the treatment of haematological diseases: A journey from bacteria to the bedside. British Journal of Haematology, 192(1), 33–49.

    Article  PubMed  Google Scholar 

  81. Ye, L., et al. (2016). Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia. Proceedings of the National Academy of Sciences, 113(38), 10661–10665.

    Article  CAS  Google Scholar 

  82. Rodríguez-Rodríguez, D. R., et al. (2019). Genome editing: A perspective on the application of CRISPR/Cas9 to study human diseases. International Journal of Molecular Medicine, 43(4), 1559–1574.

    PubMed  PubMed Central  Google Scholar 

  83. Zhang, H., & McCarty, N. (2016). CRISPR-Cas9 technology and its application in haematological disorders. British Journal of Haematology, 175(2), 208–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Canver, M. C., et al. (2015). BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature, 527(7577), 192–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Xie, F., et al. (2014). Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Research, 24(9), 1526–1533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Huang, X., et al. (2015). Production of gene-corrected adult beta globin protein in human erythrocytes differentiated from patient iPSCs after genome editing of the sickle point mutation. Stem Cells, 33(5), 1470–1479.

    Article  CAS  PubMed  Google Scholar 

  87. Renneville, A., et al. (2015). EHMT1 and EHMT2 inhibition induces fetal hemoglobin expression. Blood, The Journal of the American Society of Hematology, 126(16), 1930–1939.

    CAS  Google Scholar 

  88. Dever, D. P., et al. (2016). CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature, 539(7629), 384–389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Traxler, E. A., et al. (2016). A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nature Medicine, 22(9), 987–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Osborn, M. J., et al. (2015). Fanconi anemia gene editing by the CRISPR/Cas9 system. Human Gene Therapy, 26(2), 114–126.

    Article  CAS  PubMed  Google Scholar 

  91. Ablain, J., et al. (2015). A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. Developmental Cell, 32(6), 756–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Park, C.-Y., et al. (2015). Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell, 17(2), 213–220.

    Article  CAS  PubMed  Google Scholar 

  93. Guan, Y., et al. (2016). CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Molecular Medicine, 8(5), 477–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chen, M., et al. (2019). CRISPR-Cas9 for cancer therapy: Opportunities and challenges. Cancer Letters, 447, 48–55.

    Article  CAS  PubMed  Google Scholar 

  95. Liu, B., Saber, A., & Haisma, H. J. (2019). CRISPR/Cas9: A powerful tool for identification of new targets for cancer treatment. Drug Discovery Today, 24(4), 955–970.

    Article  CAS  PubMed  Google Scholar 

  96. Cheung, A.H.-K., et al. (2018). Specific targeting of point mutations in EGFR L858R-positive lung cancer by CRISPR/Cas9. Laboratory Investigation, 98(7), 968–976.

    Article  CAS  PubMed  Google Scholar 

  97. Koo, T., et al. (2017). Selective disruption of an oncogenic mutant allele by CRISPR/Cas9 induces efficient tumor regression. Nucleic acids research, 45(13), 7897–7908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mou, H., et al. (2017). Genetic disruption of oncogenic Kras sensitizes lung cancer cells to Fas receptor-mediated apoptosis. Proceedings of the National Academy of Sciences, 114(14), 3648–3653.

    Article  CAS  Google Scholar 

  99. Bu, X., et al. (2018). CD38 knockout suppresses tumorigenesis in mice and clonogenic growth of human lung cancer cells. Carcinogenesis, 39(2), 242–251.

    Article  CAS  PubMed  Google Scholar 

  100. Shen, F., et al. (2016). Novel small-molecule CX3CR1 antagonist impairs metastatic seeding and colonization of breast cancer cells. Molecular Cancer Research, 14(6), 518–527.

    Article  CAS  PubMed  Google Scholar 

  101. Jin, K., Pandey, N. B., & Popel, A. S. (2017). Crosstalk between stromal components and tumor cells of TNBC via secreted factors enhances tumor growth and metastasis. Oncotarget, 8(36), 60210.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Álvarez-Fernández, M., et al. (2017). Therapeutic relevance of the PP2A-B55 inhibitory kinase MASTL/Greatwall in breast cancer. Cell Death & Differentiation. https://doi.org/10.1038/s41418-017-0024-0

    Article  Google Scholar 

  103. Karn, V., et al. (2022). CRISPR/Cas9 system in breast cancer therapy: Advancement, limitations and future scope. Cancer Cell International, 22(1), 1–14.

    Article  Google Scholar 

  104. Zhang, S., et al. (2017). Suppression of protein tyrosine phosphatase N23 predisposes to breast tumorigenesis via activation of FYN kinase. Genes & Development, 31(19), 1939–1957.

    Article  CAS  Google Scholar 

  105. Zheng, Y.-Z., et al. (2018). PHF5A epigenetically inhibits apoptosis to promote breast cancer progression. Cancer Research, 78(12), 3190–3206.

    Article  CAS  PubMed  Google Scholar 

  106. Peng, H., et al. (2016). Over-expression of CHAF1A promotes cell proliferation and apoptosis resistance in glioblastoma cells via AKT/FOXO3a/Bim pathway. Biochemical and Biophysical Research Communications, 469(4), 1111–1116.

    Article  CAS  PubMed  Google Scholar 

  107. Leisegang, M. S., et al. (2017). Long noncoding RNA MANTIS facilitates endothelial angiogenic function. Circulation, 136(1), 65–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang, X., et al. (2017). CRISPR/Cas9-mediated genome engineering of CXCR4 decreases the malignancy of hepatocellular carcinoma cells in vitro and in vivo. Oncology Reports, 37(6), 3565–3571.

    Article  CAS  PubMed  Google Scholar 

  109. Zhu, B., et al. (2017). Knockout of the Nogo-B gene attenuates tumor growth and metastasis in hepatocellular carcinoma. Neoplasia, 19(7), 583–593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yau, E. H., et al. (2017). Genome-wide CRISPR screen for essential cell growth mediators in mutant KRAS colorectal cancers. Cancer Research, 77(22), 6330–6339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhou, M., et al. (2018). Caspase-3 regulates the migration, invasion and metastasis of colon cancer cells. International Journal of Cancer, 143(4), 921–930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Xia, D., et al. (2017). Knockout of MARCH2 inhibits the growth of HCT116 colon cancer cells by inducing endoplasmic reticulum stress. Cell Death & Disease, 8(7), e2957–e2957.

    Article  CAS  Google Scholar 

  113. Wu, X.-Y., et al. (2017). Identification of RING-box 2 as a potential target for combating colorectal cancer growth and metastasis. American Journal of Cancer Research, 7(6), 1238.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Yoshida, K., et al. (2017). SNORA21–an oncogenic small nucleolar RNA, with a prognostic biomarker potential in human colorectal cancer. eBioMedicine, 22, 68–77.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Norouzi-Barough, L., et al. (2018). CRISPR/Cas9, a new approach to successful knockdown of ABCB1/P-glycoprotein and reversal of chemosensitivity in human epithelial ovarian cancer cell line. Iranian Journal of Basic Medical Sciences, 21(2), 181.

    PubMed  PubMed Central  Google Scholar 

  116. Kim, M. Y., et al. (2016). Engineering resistance to antigen-specific immunotherapy in normal hematopoietic stem cells by gene editing to enable targeting of acute myeloid leukemia. Blood, 128(22), 1000.

    Article  Google Scholar 

  117. Chen, C., et al. (2014). MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia. Cancer Cell, 25(5), 652–665.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Kawamura, N., et al. (2015). CRISPR/Cas9-mediated gene knockout of NANOG and NANOGP8 decreases the malignant potential of prostate cancer cells. Oncotarget, 6(26), 22361.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Zhu, D., et al. (2018). Nanoparticles based on poly (β-Amino Ester) and HPV16-Targeting CRISPR/shRNA as potential drugs for HPV16-related cervical malignancy. Molecular Therapy, 26(10), 2443–2455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kennedy, E. M., et al. (2015). Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR/Cas RNA-guided DNA endonuclease. Virology, 476, 196–205.

    Article  CAS  PubMed  Google Scholar 

  121. Lin, S.-R., et al. (2014). The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Molecular Therapy-Nucleic Acids, 3, e186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Li, H., et al. (2017). Removal of integrated hepatitis B virus DNA using CRISPR-Cas9. Frontiers in Cellular and Infection Microbiology, 7, 91.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Kitamura, K., et al. (2018). Flap endonuclease 1 is involved in cccDNA formation in the hepatitis B virus. PLoS Pathogens, 14(6), e1007124.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Kaminski, R., et al. (2016). Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas9 gene editing. Scientific reports, 6(1), 1–15.

    Google Scholar 

  125. Wang, Z., et al. (2016). CRISPR/Cas9-derived mutations both inhibit HIV-1 replication and accelerate viral escape. Cell Reports, 15(3), 481–489.

    Article  CAS  PubMed  Google Scholar 

  126. Zhang, Y., et al. (2015). CRISPR/gRNA-directed synergistic activation mediator (SAM) induces specific, persistent and robust reactivation of the HIV-1 latent reservoirs. Scientific Reports, 5(1), 1–14.

    Google Scholar 

  127. Saayman, S. M., et al. (2016). Potent and targeted activation of latent HIV-1 using the CRISPR/dCas9 activator complex. Molecular Therapy, 24(3), 488–498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang, J., & Quake, S. R. (2014). RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection. Proceedings of the National Academy of Sciences, 111(36), 13157–13162.

    Article  CAS  Google Scholar 

  129. Kennedy, E. M., et al. (2014). Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. Journal of Virology, 88(20), 11965–11972.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Zhen, S., et al. (2016). In vitro and in vivo synergistic therapeutic effect of cisplatin with human papillomavirus16 E6/E7 CRISPR/Cas9 on cervical cancer cell line. Translational Oncology, 9(6), 498–504.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Hammond, A., et al. (2016). A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nature Biotechnology, 34(1), 78–83.

    Article  CAS  PubMed  Google Scholar 

  132. Gantz, V. M., et al. (2015). Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proceedings of the National Academy of Sciences, 112(49), E6736–E6743.

    Article  CAS  Google Scholar 

  133. Zhang, W.-W., & Matlashewski, G. (2015). CRISPR-Cas9-mediated genome editing in Leishmania donovani. MBio, 6(4), e00861-e915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Latella, M. C., et al. (2016). In vivo editing of the human mutant rhodopsin gene by electroporation of plasmid-based CRISPR/Cas9 in the mouse retina. Molecular Therapy-Nucleic Acids, 5, e389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Cai, B., et al. (2018). Application of CRISPR/Cas9 technologies combined with iPSCs in the study and treatment of retinal degenerative diseases. Human Genetics, 137(9), 679–688.

    Article  CAS  PubMed  Google Scholar 

  136. Bakondi, B., et al. (2016). In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Molecular Therapy, 24(3), 556–563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kim, K., et al. (2017). Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration. Genome Research, 27(3), 419–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wu, Y., et al. (2013). Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell, 13(6), 659–662.

    Article  CAS  PubMed  Google Scholar 

  139. Wu, Y., et al. (2015). Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Research, 25(1), 67–79.

    Article  CAS  PubMed  Google Scholar 

  140. Gibson, G. J., & Yang, M. (2017). What rheumatologists need to know about CRISPR/Cas9. Nature Reviews Rheumatology, 13(4), 205–216.

    Article  CAS  PubMed  Google Scholar 

  141. Tang, S., et al. (2014). RasGRP3 limits Toll-like receptor-triggered inflammatory response in macrophages by activating Rap1 small GTPase. Nature Communications, 5(1), 1–14.

    Article  CAS  Google Scholar 

  142. Jing, W., et al. (2015). CRISPR/CAS9-mediated genome editing of miRNA-155 inhibits proinflammatory cytokine production by RAW264. 7 cells. BioMed Research International. https://doi.org/10.1155/2015/326042

  143. Chang, C.-W., et al. (2015). Modeling human severe combined immunodeficiency and correction by CRISPR/Cas9-enhanced gene targeting. Cell reports, 12(10), 1668–1677.

    Article  CAS  PubMed  Google Scholar 

  144. Flynn, R., et al. (2015). CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells. Experimental Hematology, 43(10), 838–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chu, H. W., et al. (2015). CRISPR–Cas9-mediated gene knockout in primary human airway epithelial cells reveals a proinflammatory role for MUC18. Gene Therapy, 22(10), 822–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kuo, C. Y., et al. (2015). Site specific gene correction of defects in CD40 ligand using the Crispr/Cas9 genome editing platform. Journal of Allergy and Clinical Immunology, 135(2), 17.

    Article  Google Scholar 

  147. Zuccaro, M. V., et al. (2020). Allele-specific chromosome removal after Cas9 cleavage in human embryos. Cell, 183(6), 1650–1664.

    Article  CAS  PubMed  Google Scholar 

  148. Kang, X., et al. (2016). Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. Journal of Assisted Reproduction and Genetics, 33, 581–588.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Tang, L., et al. (2017). CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein. Molecular Genetics and Genomics, 292(3), 525–533.

    Article  CAS  PubMed  Google Scholar 

  150. Ma, H., et al. (2017). Correction of a pathogenic gene mutation in human embryos. Nature, 548(7668), 413–419.

    Article  CAS  PubMed  Google Scholar 

  151. Schenkwein, D., & Ylä-Herttuala, S. (2018). Gene editing of human embryos with CRISPR/Cas9: Great promise coupled with important caveats. Molecular Therapy, 26(3), 659–660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Cyranoski, D., & Ledford, H. (2018). Genome-edited baby claim provokes international outcry. Nature, 563(7731), 607–609.

    Article  CAS  PubMed  Google Scholar 

  153. Hoffmann, E. R., & Roig, I. (2020). Cas9 in human embryos: On target but no repair. Cell, 183(6), 1464–1466.

    Article  CAS  PubMed  Google Scholar 

  154. Di, C., et al. (2018). Exosomes as drug carriers for clinical application. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup3), S564–S570.

    Article  PubMed  Google Scholar 

  155. Luan, X., et al. (2017). Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacologica Sinica, 38(6), 754–763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Aslan, C., et al. (2019). Tumor-derived exosomes: Implication in angiogenesis and antiangiogenesis cancer therapy. Journal of Cellular Physiology, 234(10), 16885–16903.

    Article  CAS  PubMed  Google Scholar 

  157. Aslan, C., et al. (2021). Exosomes for mRNA delivery: A novel biotherapeutic strategy with hurdles and hope. BMC Biotechnology, 21, 1–12.

    Article  Google Scholar 

  158. Jiang, X.-C., & Gao, J.-Q. (2017). Exosomes as novel bio-carriers for gene and drug delivery. International Journal of Pharmaceutics, 521(1–2), 167–175.

    Article  CAS  PubMed  Google Scholar 

  159. Alvarez-Erviti, L., et al. (2011). Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature Biotechnology, 29(4), 341–345.

    Article  CAS  PubMed  Google Scholar 

  160. Taylor, D. D., & Gercel-Taylor, C. (2008). MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecologic Oncology, 110(1), 13–21.

    Article  CAS  PubMed  Google Scholar 

  161. Rezaie, J., et al. (2018). Exosomes and their application in biomedical field: Difficulties and advantages. Molecular Neurobiology, 55(4), 3372–3393.

    Article  CAS  PubMed  Google Scholar 

  162. Andaloussi, S. E., et al. (2013). Exosomes for targeted siRNA delivery across biological barriers. Advanced Drug Delivery Reviews, 65(3), 391–397.

    Article  PubMed  Google Scholar 

  163. McAndrews, K. M., et al. (2021). Exosome-mediated delivery of CRISPR/Cas9 for targeting of oncogenic KrasG12D in pancreatic cancer. Life Science Alliance. https://doi.org/10.26508/lsa.202000875

    Article  PubMed  PubMed Central  Google Scholar 

  164. Ye, Y., et al. (2020). An engineered exosome for delivering sgRNA: Cas9 ribonucleoprotein complex and genome editing in recipient cells. Biomaterials science, 8(10), 2966–2976.

    Article  CAS  PubMed  Google Scholar 

  165. Wilbie, D., Walther, J., & Mastrobattista, E. (2019). Delivery aspects of CRISPR/Cas for in vivo genome editing. Accounts of Chemical Research, 52(6), 1555–1564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kalluri, R., & LeBleu, V. S. (2020). The biology, function, and biomedical applications of exosomes. Science, 367(6478), 6977.

    Article  Google Scholar 

  167. Chen, R., et al. (2019). Friend or foe? Evidence indicates endogenous exosomes can deliver functional gRNA and Cas9 protein. Small (Weinheim an der Bergstrasse, Germany), 15(38), 1902686.

    Article  Google Scholar 

  168. Duan, L., et al. (2021). Nanoparticle delivery of CRISPR/Cas9 for genome editing. Frontiers in Genetics, 12, 673286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kim, S. M., et al. (2017). Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. Journal of Controlled Release, 266, 8–16.

    Article  CAS  PubMed  Google Scholar 

  170. Luo, N., et al. (2021). Hepatic stellate cell reprogramming via exosome-mediated CRISPR/dCas9-VP64 delivery. Drug Delivery, 28(1), 10–18.

    Article  CAS  PubMed  Google Scholar 

  171. Zhuang, J., et al. (2020). Extracellular vesicles engineered with valency-controlled DNA nanostructures deliver CRISPR/Cas9 system for gene therapy. Nucleic acids research, 48(16), 8870–8882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Zhang, X., et al. (2020). Programmable extracellular vesicles for macromolecule delivery and genome modifications. Developmental Cell, 55(6), 784–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Yao, X., et al. (2021). Engineered extracellular vesicles as versatile ribonucleoprotein delivery vehicles for efficient and safe CRISPR genome editing. Journal of Extracellular Vesicles, 10(5), e12076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Li, Z., et al. (2018). In vitro and in vivo RNA inhibition by CD9-HuR functionalized exosomes encapsulated with miRNA or CRISPR/dCas9. Nano Letters, 19(1), 19–28.

    Article  CAS  PubMed  Google Scholar 

  175. Usman, W. M., et al. (2018). Efficient RNA drug delivery using red blood cell extracellular vesicles. Nature Communications, 9(1), 2359.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Yang, Z., et al. (2020). Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nature Biomedical Engineering, 4(1), 69–83.

    Article  CAS  PubMed  Google Scholar 

  177. Lin, Y., et al. (2018). Exosome–liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs. Advanced Science, 5(4), 1700611.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Horodecka, K., & Düchler, M. (2021). CRISPR/Cas9: Principle, applications, and delivery through extracellular vesicles. International Journal of Molecular Sciences, 22(11), 6072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zhu, X., et al. (2023). The CRISPR/Cas9 system delivered by extracellular vesicles. Pharmaceutics, 15(3), 984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Khalyfa, A., & Sanz-Rubio, D. (2021). The mystery of red blood cells extracellular vesicles in sleep apnea with metabolic dysfunction. International Journal of Molecular Sciences, 22(9), 4301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Emam, S. E., et al. (2019). Cancer cell-type tropism is one of crucial determinants for the efficient systemic delivery of cancer cell-derived exosomes to tumor tissues. European Journal of Pharmaceutics and Biopharmaceutics, 145, 27–34.

    Article  CAS  PubMed  Google Scholar 

  182. Liang, Y., et al. (2021). Engineering exosomes for targeted drug delivery. Theranostics, 11(7), 3183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Rajput, A., et al. (2022). Exosomes as new generation vehicles for drug delivery: Biomedical applications and future perspectives. Molecules, 27(21), 7289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was not financially supported by any organization in the private or governmental section.

Author information

Authors and Affiliations

Authors

Contributions

Conception and manuscript design: RJ collection of data: CA, NMZ, FF, and RJ. Manuscript writing: CA, NMZ, FF, and RJ. Made important revisions and confirmed final revision: FF and RJ. All authors reviewed and approved the final version of the manuscript.

Corresponding authors

Correspondence to Fatemeh Faraji or Reza Jafari.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslan, C., Zolbanin, N.M., Faraji, F. et al. Exosomes for CRISPR-Cas9 Delivery: The Cutting Edge in Genome Editing. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00932-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00932-7

Keywords

Navigation