Skip to main content

Advertisement

Log in

PTPRC Inhibits Ferroptosis of Osteosarcoma Cells via Blocking TFEB/FTH1 Signaling

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Protein tyrosine phosphatase receptor type C (PTPRC) is reported to function as an oncogenic role in various cancer. However, the studies on the roles of PTPRC in osteosarcoma (OS) are limited. This study aimed to explore the potentials of PTPRC in OS. mRNA levels were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Protein expression was detected by western blot. Lysosome biogenesis was determined using immunofluorescence. The binding sites of transcription factor EB (TFEB) on the promoter of ferritin heavy chain 1 (FTH1) were predicted by the online dataset JASPAR and confirmed by luciferase and chromatin immunoprecipitation (ChIP) assays. Cell death was determined using propidium iodide (PI) and TdT-mediated dUTP nick-end labeling (TUNEL) staining. The results showed that PTPRC was significantly overexpressed in OS tissues and cells. PTPRC knockdown promoted the phosphorylation and nuclear translocation of TFEB. Moreover, PTPRC knockdown markedly promoted lysosome biogenesis and the accumulation of ferrous ion (Fe2+), whereas decreased the release of glutathione (GSH). Besides, PTPRC knockdown significantly promoted autophagy and downregulated mRNA expression of FTH1 and ferritin light chain (FTL). Additionally, TFEB transcriptionally inactivated FTH1. PTPRC knockdown significantly promoted the ferroptosis of OS cells, which was markedly alleviated by TFEB shRNA. Taken together, PTPRC knockdown-mediated TFEB phosphorylation and translocation dramatically promoted lysosome biogenesis, ferritinophagy, as well as the ferroptosis of OS cells via regulating FTH1/FTL signaling. Therefore, PTPRC/TFEB/FTH1 signaling may be a potential target for OS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Huang, X., et al. (2022). Engineered exosome as targeted lncRNA MEG3 delivery vehicles for osteosarcoma therapy. Journal of Controlled Release : Official Journal of the Controlled Release Society, 343, 107–117.

    Article  CAS  PubMed  Google Scholar 

  2. Ritter, J., & Bielack, S. S. (2010). Osteosarcoma. Annals of Oncology, 21(Suppl 7), vii320–vii325.

    Article  PubMed  Google Scholar 

  3. Lilienthal, I., & Herold, N. (2020). Targeting Molecular Mechanisms Underlying Treatment Efficacy and Resistance in Osteosarcoma: A review of current and future strategies. International Journal of Molecular Sciences, 21, 18.

    Article  Google Scholar 

  4. Meltzer, P. S., & Helman, L. J. (2021). New Horizons in the treatment of Osteosarcoma. New England Journal of Medicine, 385(22), 2066–2076.

    Article  CAS  PubMed  Google Scholar 

  5. Chi, X., et al. (2021). Genomic analysis revealed Mutational Traits Associated with Clinical Outcomes in Osteosarcoma. Cancer Manag Res, 13, 5101–5111.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jiang, X., et al. (2021). Ferroptosis: Mechanisms, biology and role in disease. Nature Reviews Molecular Cell Biology, 22(4), 266–282.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tang, D., et al. (2021). Ferroptosis: Molecular mechanisms and health implications. Cell Research, 31(2), 107–125.

    Article  CAS  PubMed  Google Scholar 

  8. Xue, X. (2022). Tumour cells are sensitised to ferroptosis via RB1CC1-mediated transcriptional reprogramming. Clin Transl Med 12 (2), e747.

  9. Long, F. (2023). CircZBTB46 protects Acute myeloid leukemia cells from ferroptotic cell death by upregulating SCD. Cancers (Basel) 15 (2).

  10. Ren, T., et al. (2022). Zoledronic acid induces ferroptosis by reducing ubiquinone and promoting HMOX1 expression in osteosarcoma cells. Frontiers in Pharmacology, 13, 1071946.

    Article  CAS  PubMed  Google Scholar 

  11. Muhoberac, B. B., & Vidal, R. (2019). Iron, Ferritin, Hereditary Ferritinopathy, and Neurodegeneration. Front Neurosci, 13, 1195.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liu, J., et al. (2022). The NSUN5-FTH1/FTL pathway mediates ferroptosis in bone marrow-derived mesenchymal stem cells. Cell Death Discov, 8(1), 99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, G., et al. (2023). 1–2 ​T static magnetic field combined with ferumoxytol prevent unloading-induced bone loss by regulating iron metabolism in osteoclastogenesis. J Orthop Translat, 38, 126–140.

    Article  PubMed  Google Scholar 

  14. Al Barashdi, M. A., et al. (2021). Protein tyrosine phosphatase receptor type C (PTPRC or CD45). Journal of Clinical Pathology, 74(9), 548–552.

    Article  CAS  PubMed  Google Scholar 

  15. Park, S. Y., et al. (2021). Aberrant activation of the CD45-Wnt signaling axis promotes stemness and therapy resistance in colorectal cancer cells. Theranostics, 11(18), 8755–8770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mao, F. Y., et al. (2018). CD45(+)CD33(low)CD11b(dim) myeloid-derived suppressor cells suppress CD8(+) T cell activity via the IL-6/IL-8-arginase I axis in human gastric cancer. Cell Death and Disease, 9(7), 763.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ko, Y., et al. (2021). Development of a Bioluminescent Human Osteosarcoma Model in Humanized NSG mice: A pilot study. In Vivo, 35(4), 2151–2157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang, H. L., et al. (2022). A defective lysophosphatidic acid-autophagy axis increases miscarriage risk by restricting decidual macrophage residence. Autophagy, 18(10), 2459–2480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sha, Y., et al. (2017). STUB1 regulates TFEB-induced autophagy-lysosome pathway. Embo Journal, 36(17), 2544–2552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Martina, J. A., & Puertollano, R. (2018). Protein phosphatase 2A stimulates activation of TFEB and TFE3 transcription factors in response to oxidative stress. Journal of Biological Chemistry, 293(32), 12525–12534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rochette, L. (2022). Lipid peroxidation and Iron metabolism: Two Corner Stones in the Homeostasis Control of Ferroptosis. International Journal of Molecular Sciences 24 (1).

  22. Latunde-Dada, G. O. (2017). Ferroptosis: Role of lipid peroxidation, iron and ferritinophagy. Biochimica Et Biophysica Acta - General Subjects, 1861(8), 1893–1900.

    Article  CAS  PubMed  Google Scholar 

  23. Jiang, T. Y., et al. (2023). PTEN Deficiency facilitates Exosome Secretion and Metastasis in Cholangiocarcinoma by Impairing TFEB-mediated Lysosome Biogenesis. Gastroenterology, 164(3), 424–438.

    Article  CAS  PubMed  Google Scholar 

  24. Toyoshima, K., et al. (2015). Analysis of circulating tumor cells derived from advanced gastric cancer. International Journal of Cancer, 137(4), 991–998.

    Article  CAS  PubMed  Google Scholar 

  25. Guo, G. (2022). PTPRC Overexpression Predicts Poor Prognosis and Correlates with Immune Cell Infiltration in Pediatric Acute Myeloid Leukemia. Clin Lab 68 (7).

  26. Perron, M., & Saragovi, H. U. (2018). Inhibition of CD45 phosphatase activity induces cell cycle arrest and apoptosis of CD45(+) lymphoid tumors Ex vivo and in vivo. Molecular Pharmacology, 93(6), 575–580.

    Article  CAS  PubMed  Google Scholar 

  27. Li, J., et al. (2017). Membrane-proximal Epitope facilitates efficient T cell synapse formation by Anti-FcRH5/CD3 and is a requirement for Myeloma Cell Killing. Cancer Cell, 31(3), 383–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, M., et al. (2021). ISL1 promoted tumorigenesis and EMT via Aurora kinase A-induced activation of PI3K/AKT signaling pathway in neuroblastoma. Cell Death and Disease, 12(6), 620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, Y., et al. (2023). Correlation analysis of lipid metabolism genes with the immune microenvironment in gastric cancer and the construction of a novel gene signature. Clinical and Translational Oncology, 25(5), 1315–1331.

    Article  CAS  PubMed  Google Scholar 

  30. Xia, H., et al. (2020). Autophagic adaptation to oxidative stress alters peritoneal residential macrophage survival and ovarian cancer metastasis. JCI Insight, 5, 18.

    Article  Google Scholar 

  31. Lei, G., et al. (2022). Targeting ferroptosis as a vulnerability in cancer. Nature Reviews Cancer, 22(7), 381–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fang, L., et al. (2017). Transcriptional factor EB regulates macrophage polarization in the tumor microenvironment. Oncoimmunology, 6(5), e1312042.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu, X., et al. (2021). Tubeimoside-1 induces TFEB-dependent lysosomal degradation of PD-L1 and promotes antitumor immunity by targeting mTOR. Acta Pharm Sin B, 11(10), 3134–3149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhu, X., et al. (2021). TFEB promotes prostate Cancer Progression via regulating ABCA2-Dependent lysosomal Biogenesis. Frontiers in Oncology, 11, 632524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ravichandran, M., et al. (2022). Coordinated transcriptional and Catabolic Programs Support Iron-Dependent adaptation to RAS-MAPK pathway inhibition in pancreatic Cancer. Cancer Discovery, 12(9), 2198–2219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, H. T., et al. (2021). TRIM21-regulated annexin A2 plasma membrane trafficking facilitates osteosarcoma cell differentiation through the TFEB-mediated autophagy. Cell Death and Disease, 12(1), 21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, Y. (2018). Iron Metabolism in Cancer. International Journal of Molecular Sciences 20 (1).

  38. Yambire, K. F. (2019). Impaired lysosomal acidification triggers iron deficiency and inflammation in vivo. Elife 8.

  39. Zhu, X., et al. (2020). Ribosome recycling by ABCE1 links lysosomal function and Iron homeostasis to 3’ UTR-Directed Regulation and nonsense-mediated decay. Cell Rep, 32(2), 107895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, S., et al. (2022). 12 T high static magnetic field suppresses osteosarcoma cells proliferation by regulating intracellular ROS and iron status. Experimental Cell Research, 417(2), 113223.

    Article  CAS  PubMed  Google Scholar 

  41. Liu, Z., et al. (2023). Myeloid FTH1 Deficiency protects mice from colitis and colitis-associated Colorectal Cancer via reducing DMT1-Imported Iron and STAT3 activation. Inflammatory Bowel Diseases, 29(8), 1285–1296.

    Article  PubMed  Google Scholar 

  42. Chan, J. J., et al. (2018). A FTH1 gene:Pseudogene:microRNA network regulates tumorigenesis in prostate cancer. Nucleic Acids Research, 46(4), 1998–2011.

    Article  CAS  PubMed  Google Scholar 

  43. Chen, G. Q., et al. (2020). Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis. Cell Death and Differentiation, 27(1), 242–254.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Yan Shao; Methodology: Xiao Zuo; Formal analysis and investigation: Yan Shao, Xiao Zuo; Writing - original draft preparation: Yan Shao, Xiao Zuo; Writing - review and editing: Yan Shao, Xiao Zuo; Resources: Yan Shao; Supervision: Xiao Zuo. Both the authors read and approved the final manuscript.

Corresponding author

Correspondence to Yan Shao.

Ethics declarations

Conflict of Interest

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yan Shao and Xiao Zuo contributed equally to this study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Y., Zuo, X. PTPRC Inhibits Ferroptosis of Osteosarcoma Cells via Blocking TFEB/FTH1 Signaling. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00914-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00914-9

Keywords

Navigation