Skip to main content
Log in

Ecofriendly Approach on the Removal of Reactive Orange 107 from Aqueous Solutions Using Cladophora Species as a Novel Biosorbent

  • Original Article
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The efficiency of Cladophora species for the removal of Reactive Orange 107 (RO107) from the aqueous solution was evaluated through batch adsorption studies by optimising various process parameters such as pH (3–8), dye concentration (100–500 mg/l), biosorbent concentration (100–500 mg/l), temperature (25–45 °C) and contact time (12–108 h). The results revealed that the optimum conditions for RO107 decolourisation (87%) was found on 72 h of incubation with 100 mg/l dye concentration amended with 200 mg/l biosorbent at pH 6 at 25 °C. The mechanism of dye adsorption was evaluated using isotherms, kinetics and thermodynamic models. The experimental data fitted well with Langmuir isotherm and pseudo-second-order kinetic models. Thermodynamic studies revealed that the adsorption process was endothermic, spontaneous and feasible in nature. Recovery of RO107 from the Cladophora sp. was maximum when 0.1 M HNO3 was used as an eluent. UV-Visible, FT-IR and SEM analyses reveal the interaction between the biosorbent–adsorbate and confirm the process of decolourisation by Cladophora sp. In order to evaluate the nature of the untreated and treated dye solutions, toxicological studies were conducted and the results revealed that the treated dye solution was non- toxic as compared with untreated dye solution. The results of the docking study proved that there was a substantial binding energy between RO107 and the protein (Cytochrome C6) of Cladophora sp. Hence, Cladophora sp. proves to be a promising biosorbent to decolourise RO107 and its potential can be explored in the textile sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Gani, K. M., Rajpal, A., & Kazmi, A. A. (2016). Contamination level of four priority phthalates in North Indian wastewater treatment plants and their fate in sequencing batch reactor systems. Environmental Science. Processes & Impacts, 18, 406–416.

    Article  CAS  Google Scholar 

  2. Baldev, E., MubarakAli, D., Ilavarasi, A., Pandiaraj, D., Ishack, K. S. S., & Thajuddin, N. (2013). Degradation of synthetic dye, Rhodamine B to environmentally non-toxic products using microalgae. Colloids and Surfaces B, 105, 207–214.

    Article  CAS  Google Scholar 

  3. Kadam, A. A., Kulkarni, A. N., Lade, H. S., & Govindwar. (2014). Exploiting the potential of plant growth promoting bacteria in decolorization of dye disperse red 73 adsorbed on milled sugarcane bagasse under solid state fermentation. International Biodeterioration and Biodegradation, 86, 364–371.

    Article  CAS  Google Scholar 

  4. Yaseen, D. A., & Scholz, M. (2018). Treatment of synthetic textile wastewater containing dye mixtures with microcosms. Environmental Science and Pollution Research, 25, 1980–1997.

    Article  CAS  PubMed  Google Scholar 

  5. Mondal, H., Md, I. I., Md, M. I., & Md, K. (2015). Synthesis of reactive dyes containing acrylamide group and their application to cotton fabric. International Research Journal of Pure Applied Chemistry, 6, 135–145.

    Article  Google Scholar 

  6. Kurade, M. B., Kim, J. R., Govindwar, & Jeon, B. H. (2016). Insights into microalgae mediated biodegradation of diazinon by Chlorella vulgaris: Microalgal tolerance to xenobiotic pollutants and metabolism. Algal Research, 20, 126–134.

    Article  Google Scholar 

  7. Xie, X. H., Zheng, X. L., Yu, C. Z., Zhang, Q. Y., Wang, Y. Q., Cong, J. H., Liu, N., He, Z. J., Yang, B., & Liu, J. S. (2020). High-efficient biodegradation of refractory dye by a new bacterial flora DDMY1 under different conditions. International Journal of Environmental Science and Technology, 17, 1491–1502.

    Article  CAS  Google Scholar 

  8. Neoh, C. H., Lam, C. Y., Lim, C. K., Yahya, A., Bay, H. H., Ibrahim, Z., & Noor, Z. Z. (2015). Biodecolorization of recalcitrant dye as the sole source of nutrition using Curvularia clavata NZ2 and decolorization ability of its crude enzymes. Environmental Science and Pollution Research, 22, 11669–11678.

    Article  CAS  PubMed  Google Scholar 

  9. Martorell, M. M. P., de Figueroa, H. F., & L.I.C. (2017). Biological degradation of Reactive Black 5 dye by yeast Trichosporon akiyoshidainum. Journal of Environmental Chemical Engineering, 5, 5987–5993.

    Article  CAS  Google Scholar 

  10. Pathak, V. V., Kothari, R., Chopra, A. K., & Singh, D. P. (2015). Experimental and kinetic studies for phycoremediation and dye removal by Chlorella pyrenoidosa from textile wastewater. Journal of Environmental Management, 163, 270–277.

    Article  CAS  PubMed  Google Scholar 

  11. Hurtado-McCormick, V., Commault, A., Herdean, A., Price, S., Pernice, M., & Ralph, P. (2022). Generation of Synechocystis sp. PCC 6803 mutant with enhanced laccase-like activity. Bioresource Technology Reports, 20, 101266.

    Article  CAS  Google Scholar 

  12. Ahmad, M. A., Ahmad, N., & Bello, O. S. (2015). Removal of remazol brilliant blue reactive dye from aqueous solutions using watermelon rinds as adsorbent. Journal of Dispersion Science and Technology, 36, 845–858.

    Article  CAS  Google Scholar 

  13. Mahdi, M. A., Yousefi, S. R., Jasim, L. S., & Salavati-Niasari, M. (2022). Green synthesis of DyBa2Fe3O7. 988/DyFeO3 nanocomposites using almond extract with dual eco-friendly applications: Photocatalytic and antibacterial activities. International Journal of Hydrogen Energy, 47, 14319–14330.

    Article  CAS  Google Scholar 

  14. Ramesh, P., Rajendran, A., & Ashokkumar, M. (2022). (2022) Biosynthesis of zinc oxide nanoparticles from Phyllanthus Niruri plant extract for photocatalytic and antioxidant activities. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2041004

    Article  Google Scholar 

  15. Kamran, U., Bhatti, H. N., Noreen, S., Tahir, M. A., & Park, S. J. (2022). Chemically modified sugarcane bagasse-based biocomposites for efficient removal of acid red 1 dye: Kinetics, isotherms, thermodynamics, and desorption studies. Chemosphere, 291, 132796.

    Article  CAS  PubMed  Google Scholar 

  16. Rajoriya, S., Saharan, V. K., Pundir, A. S., Nigam, M., & Roy, K. (2021). Adsorption of methyl red dye from aqueous solution onto eggshell waste material: Kinetics, isotherms and thermodynamic studies. Current Research in Green and Sustainable Chemistry, 4, 100180.

    Article  CAS  Google Scholar 

  17. Silva-Stenico, M. E., Vieira, F. D. P., Genuário, D. B., Silva, C. S. P., Moraes, L. A. B., & Fiore, M. F. (2012). Decolorization of textile dyes by cyanobacteria. Journal of the Brazilian Chemical Society, 23, 1863–1870.

    Article  CAS  Google Scholar 

  18. Srinivasan, A., & Viraraghavan, T. (2010). Decolorization of dye wastewaters by biosorbents: A review. Journal of Environmental Management, 91(10), 1915–1929.

    Article  CAS  PubMed  Google Scholar 

  19. Dönmez, G., & Aksu, Z. (2002). Removal of chromium (VI) from saline wastewaters by Dunaliella species. Process Biochemistry, 38(5), 751–762.

    Article  Google Scholar 

  20. Tien, C. J. (2002). Biosorption of metal ions by freshwater algae with different surface characteristics. Process Biochemistry, 38(4), 605–613.

    Article  CAS  Google Scholar 

  21. Özer, A., Akkaya, G., & Turabik, M. (2006). The removal of Acid Red 274 from wastewater: Combined biosorption and biocoagulation with Spirogyra rhizopus. Dyes and Pigments, 71(2), 83–89.

    Article  Google Scholar 

  22. Behl, K., Joshi, M., Sharma, M., Tandon, S., Chaurasia, A. K., Bhatnagar, A., & Nigam, S. (2019). Performance evaluation of isolated electrogenic microalga coupled with graphene oxide for decolorization of textile dye wastewater and subsequent lipid production. Journal of Chemical Engineering, 375, 121950.

    Article  CAS  Google Scholar 

  23. Logroño, W., Pérez, M., Urquizo, G., Kadier, A., Echeverría, M., Recalde, C., & Rákhely, G. (2017). Single chamber microbial fuel cell (SCMFC) with a cathodic microalgal biofilm: A preliminary assessment of the generation of bioelectricity and biodegradation of real dye textile wastewater. Chemosphere, 176, 378–388.

    Article  PubMed  ADS  Google Scholar 

  24. Amreen, S., Dash, S. K., Mohanty, L., & Sahoo, S. (2020). Fast and efficient elimination of malachite green dye by activated carbon derived from fresh water micro algae: kinetics and thermodynamic studies (pp. 2581–2593). The Mattingley Publishing Co., Inc.

    Google Scholar 

  25. Mi, Y., Zhang, S., Zhao, Y., Sun, G., & Cao, Z. (2023). Pyrrolic N and persistent free radical synergistically promote catalytic degradation of dyes via Fe2O3/activated biochar derived from taihu blue algae. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 667, 131393.

    Article  CAS  Google Scholar 

  26. El El-Sheekh, M. M., Shafay, S. M., El-Shanshoury, A. E. R. R., Hamouda, R., Gharieb, D. Y., & Abou-El-Souod, G. W. (2022). Impact of immobilized algae and its consortium in biodegradation of the textile dyes. International Journal of Phytoremediation. https://doi.org/10.1080/15226514.2022.2145000

    Article  PubMed  Google Scholar 

  27. Muhammad, R., & Adityosulindro, S. (2022). Biosorption of brilliant green dye from synthetic wastewater by modified wild algae biomass. Evergreen, 9, 133–140.

    Article  CAS  Google Scholar 

  28. Hashem, A., Aniagor, C. O., Morsy, O. M., Abou-Okeil, A., & Aly, A. A. (2022). Apricot seed shell: an agro-waste biosorbent for acid blue193 dye adsorption. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-03272-9

    Article  Google Scholar 

  29. Kaur, B., Kumar, B., Garg, N., & Kaur, N. (2015). Statistical optimization of conditions for decolorization of synthetic dyes by Cordyceps militaris MTCC 3936 using RSM. Biomed Research International 2015. https://doi.org/10.1155/2015/536745

    Article  Google Scholar 

  30. Indah, S., Helard, D., & Binuwara, A. (2017). (2018) Studies on desorption and regeneration of natural pumice for iron removal from aqueous solution. Water Science and Technology, 2, 509–515.

    Google Scholar 

  31. Vaithiyanathan, T., & Sundaramoorthy, P. (2017). Analysis of sugar mill effluent and its influence on germination and growth of African marigold (Tagetes erecta L.). Applied Water Science, 7(8), 4715–4723.

    Article  CAS  ADS  Google Scholar 

  32. de Ventura, S. P., Barros, R. L., Sintra, T., Soares, C. M., Lima, A. S., & Coutinho, J. A. (2012). Simple screening method to identify toxic/non-toxic ionic liquids: Agar diffusion test adaptation. Ecotoxicology and Environmental Safety, 83, 55–62.

    Article  CAS  PubMed  Google Scholar 

  33. Prasad, A. S., & Rao, K. V. (2013). Aerobic biodegradation of Azo dye by Bacillus cohnii MTCC 3616; an obligately alkaliphilic bacterium and toxicity evaluation of metabolites by different bioassay systems. Applied Microbiology and Biotechnology, 97(16), 7469–7481.

    Article  CAS  PubMed  Google Scholar 

  34. Whitton, B. A. (1970). Biology of Cladophora in freshwaters. Water Research, 4(7), 457–476.

    Article  Google Scholar 

  35. Yadav, M., Thakore, S., & Jadeja, R. (2022). Removal of organic dyes using Fucus vesiculosus seaweed bioadsorbent an ecofriendly approach: Equilibrium, kinetics and thermodynamic studies. Environmental Chemistry and Ecotoxicology., 4, 67–77.

    Article  CAS  Google Scholar 

  36. Berber-Villamar, N. K., Netzahuatl-Muñoz, A. R., Morales-Barrera, L., Chávez-Camarillo, G. M., Flores-Ortiz, C. M., & Cristiani-Urbina, E. (2018). Corncob as an effective, eco-friendly, and economic biosorbent for removing the azo dye Direct Yellow 27 from aqueous solutions. PLoS ONE, 13, e0196428.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Brahim, I. O., Belmedani, M., Belgacem, A., Hadoun, H., & Sadaoui, Z. (2014). Discoloration of azo dye solutions by adsorption on activated carbon prepared from the cryogenic grinding of used tires. Chemical Engineering Transactions, 38, 121–126.

    Google Scholar 

  38. Shu, J., Wang, Z., Huang, Y., Huang, N., Ren, C., & Zhang, W. (2015). Adsorption removal of Congo red from aqueous solution by polyhedral Cu2O nanoparticles: Kinetics, isotherms, thermodynamics and mechanism analysis. Journal of Alloys and Compounds, 633, 338–346.

    Article  CAS  Google Scholar 

  39. Deokar, R., & Sabale, A. (2014). Biosorption of methylene blue from aqueous solution onto green seaweeds. International Journal of Recent Science Research, 5(2), 347–351.

    Google Scholar 

  40. Kumar, K. V., Raamurthi, V., & Sivanesan, S. (2006). Biosorption of malachite green, a cationic dye onto Pithophora species, a fresh water algae. Dyes and Pigments, 69, 102–107.

    Article  Google Scholar 

  41. Rammel, R. S., Zatiti, S. A., & El-Jamal, M. M. (2011). Biosorption of crystal violet by Chaetophora elegans alga. Journal of Chemical Technology and Metallurgy, 46, 283–292.

    CAS  Google Scholar 

  42. Nadeem, U., Kant, A., & Gaijon, P. (2014). Bioremediation of crystal violet dye by algae Spirulina platensis. Journal of Emerging Technology and Innovative Research, 1, 6–10.

    Google Scholar 

  43. Lv, G. Y., Cheng, J. H., Chen, X. Y., Zhang, Z. F., & Fan, L. F. (2013). Biological decolourisation of malachite green by Deinococcus radiodurans R1. Bioresource Technology, 144, 275–280.

    Article  CAS  PubMed  Google Scholar 

  44. Mokhtar, N., Aziz, E. A., Aris, A., Ishak, W. F. W., & Ali, N. S. M. (2017). Biosorption of azo-dye using marine macro-alga of Euchema Spinosum. Journal of Environmental Chemical Engineering, 5, 5721–5731.

    Article  CAS  Google Scholar 

  45. Deniz, F., & Kepekci, R. A. (2016). Biosorption of dye from synthetic wastewater using alga enriched in phenolic compounds. Environmental Progress & Sustainable Energy, 35, 737–742.

    Article  CAS  Google Scholar 

  46. Haddadian, Z., Shavandi, M. A., Abidin, Z. Z., Razi, A. F., & Ismail, M. H. S. (2013). Removal methyl orange from aqueous solutions using dragon fruit (Hylocereus undatus) foliage. Chemical Science Transactions, 2(3), 900–910.

    CAS  Google Scholar 

  47. Arshadi, M., SalimiVahid, F., Salvacion, J. W. L., & Soleymanzadeh, M. (2014). Adsorption studies of methyl orange on an immobilized Mn-nanoparticle: Kinetic and thermodynamic. RSC Advances, 4, 16005–16017.

    Article  CAS  ADS  Google Scholar 

  48. Hussein, M. H., Abou El-Wafa, G. S., Shaaban-Dessuki, S. A., & El-Morsy, R. M. (2018). Bioremediation of methyl orange onto Nostoc carneum biomass by adsorption; kinetics and isotherm studies. Global Advanced Research Journal of Microbiology., 7, 6–22.

    Google Scholar 

  49. Basu, S., Ghosh, G., & Saha, S. (2018). Adsorption characteristics of phosphoric acid induced activation of bio-carbon: Equilibrium, kinetics, thermodynamics and batch adsorber design. Process Safety and Environmental Protection, 117, 125–142.

    Article  CAS  Google Scholar 

  50. Zafar, M. N., Dar, Q., Nawaz, F., Zafar, M. N., Iqbal, M., & Nazar, M. F. (2019). Effective adsorptive removal of azo dyes over spherical ZnO nanoparticles. J. Mater. Res. Technol, 8, 713–725.

    Article  CAS  Google Scholar 

  51. Kannan, R. R., Rajasimman, M., Rajamohan, N., & Sivapraash, B. (2010). Brown marine algae Turbinaria conoides as biosorbent for Malachite green removal: Equilibrium and kinetic modelling. Frontiers of Environmental Science and Engineering, 4, 116–122.

    Article  CAS  Google Scholar 

  52. Mona, S., Kaushik, A., & Kaushik, C. P. (2011). Waste biomass of Nostoc linckia as adsorbent of crystal violet dye: Optimization based on statistical model. International Biodeterioration and Biodegradation, 65, 513–521.

    Article  CAS  Google Scholar 

  53. Bazrafshan, E., Zarei, A. A., Nadi, H., & Zazouli, M. A. (2014). Adsorptive removal of methyl orange and reactive red 198 dyes by Moringa peregrina ash. Indian Journal of Chemical Technology, 21, 105–113.

    CAS  Google Scholar 

  54. Gupta, V. K., Bhushan, R., Nayak, A., Singh, P., & Bhushan, B. (2014). Biosorption and reuse potential of a blue green alga for the removal of hazardous reactive dyes from aqueous solutions. Bioremediation Journal, 18, 3179–3191.

    Article  Google Scholar 

  55. Khataee, A. R., Vafaei, F., & Jannatkhah, M. (2013). Biosorption of three textile dyes from contaminated water by filamentous green algal Spirogyra sp.: Kinetic, isotherm and thermodynamic studies. International Biodeterioration and Biodegradation, 83, 33–40.

    Article  CAS  Google Scholar 

  56. El-Geundi, M. S. (1991). Homogeneous surface diffusion model for the adsorption of basic dyestuffs onto natural clay in batch adsorbers. Adsorption Science Technology, 8, 217–225.

    Article  CAS  Google Scholar 

  57. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361–1403.

    Article  CAS  Google Scholar 

  58. Freundlich, H. (1907). Absorption in solution. Physikalische Chemie, 57, 384–470.

    Google Scholar 

  59. Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.

    Article  CAS  Google Scholar 

  60. Maurya, R., Ghosh, T., Paliwal, C., Shrivastav, A., Chokshi, K., Pancha, I., Ghosh, A., & Mishra, S. (2014). Biosorption of methylene blue by de-oiled algal biomass: Equilibrium, kinetics and artificial neural network modelling. PLoS ONE, 9, 113.

    Article  Google Scholar 

  61. Fakhry, E. M. (2013). Padina pavonica for the removal of dye from polluted water. American Journal of Plant Sciences, 4, 1983–1989.

    Article  Google Scholar 

  62. Jerold, M., & Sivasubramanian, V. (2016). Biosorption of malachite green from aqueous solution using brown marine macro algae Sargassum swartzii. Desalination Water Treat., 57(52), 25288–25300.

    Article  CAS  Google Scholar 

  63. Wu, F. C., Tseng, R. L., & Juang, R. S. (2005). Comparisons of porous and adsorption properties of carbons activated by steam and KOH. Journal of Colloid and Interface Science, 283, 49–56.

    Article  CAS  PubMed  ADS  Google Scholar 

  64. Mohanty, K., Das, D., & Biswas, M. N. (2005). Adsorption of phenol from aqueous solutions using activated carbons prepared from Tectona grandis sawdust by ZnCl2 activation. Journal of Chemical Engineering, 115, 121–131.

    Article  CAS  Google Scholar 

  65. Fan, L., Luo, C., Li, X., Lu, F., Qiu, H., & Sun, M. (2012). Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue. Journal of Hazardous Materials, 215–216, 272–279.

    Article  PubMed  Google Scholar 

  66. Bai, M. T., Anudeep, Y. V., Raju, C. A., Rao, P. V., & Chittibabu, N. (2021). Decolourization of eosin yellow (EY) dye using a variety of brown algae. Materials Today, 42, 1130–1137.

    Google Scholar 

  67. Tang, W., Xu, X., Ye, B. C., Cao, P., & Ali, A. (2019). Decolorization and degradation analysis of disperse red 3B by a consortium of the fungus Aspergillus sp. XJ-2 and the microalgae Chlorella sorokiniana XJK. RSC Advance, 9(25), 14558–14566.

    Article  CAS  ADS  Google Scholar 

  68. Mubarak, A. D., Suresh, R., Kumar, P. G., & M. and Thajuddin, N. (2011). Efficiency of textile dye decolorization by marine cyanobacterium, Oscillatoria formosa NTDM02. African Journal of Basic and Applied Sciences., 3, 9–13.

    Google Scholar 

  69. Gokulan, R., Avinash, A., Prabhu, G. G., & Jegan, J. (2019). Remediation of remazol dyes by biochar derived from Caulerpa scalpelliformis—An eco-friendly approach. Journal of Environmental Chemical Engineering, 7(5), 103297.

    Article  CAS  Google Scholar 

  70. Hamouda, R. A., El-Naggar, N. E. A., Doleib, N. M., & Saddiq, A. A. (2020). Bioprocessing strategies for cost-effective simultaneous removal of chromium and malachite green by marine alga Enteromorpha intestinalis. Science and Reports, 10(1), 1–19.

    Google Scholar 

  71. Hussein, H., Krull, R., Abou El-Ela, S. I., and Hempel, D. C. (2001) Interaction of the different heavy metal ions with immobilized bacterial culture degrading xenobiotic wastewater compounds. In Proceedings of the second international water association world water conference, Berlin, Germany. 1519, 15-19.

  72. Sartape, A. S., Mandhare, A. M., Jadhav, V. V., Raut, P. D., Anuse, M. A., & Kolekar, S. S. (2017). Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arabian Journal of Chemistry, 10, S3229–S3238.

    Article  CAS  Google Scholar 

  73. Chandran, R. P., Deepak, V., Krishna, S., Fathima, S., Thaha, A., & Raj, J. (2018). Allelopathic activity of leaf extracts of Mimosa pudica on growth parameters of Brassica juncea seeds. BAOJ Biotechnology, 4, 033.

    Google Scholar 

  74. Mishra, V., & Pandey, S. D. (2002). Effect of distillery effluent and leachates of industrial sludge on the germination of black gram (Cicer arietinum). Pollution Research, 21, 461–467.

    Google Scholar 

  75. Bewley, J. D., & Black, M. (1994). Seeds physiology of development and germination (2nd ed.). Plenum Press.

    Book  Google Scholar 

  76. Sharma, P., & Dubey, R. S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17, 35–52.

    Article  CAS  Google Scholar 

  77. Yu, X. Z., Feng, Y. X., & Yue, D. M. (2015). Phytotoxicity of methylene blue to rice seedlings. Global Journal of Environmental Science and Management, 1(3), 199–204.

    CAS  Google Scholar 

  78. Masarbo, R. S., Niranjana, S. R., Monisha, T. R., Nayak, A. S., & Karegoudar, T. B. (2019). Efficient decolorization and detoxification of sulphonated azo dye Ponceau 4R by using single and mixed bacterial consortia. Biocatal. Biotransformation., 37, 367–376.

    Article  CAS  Google Scholar 

  79. Hassan, I., Mohamedelhassan, E., Yanful, E. K., & Yuan, Z. C. (2016). A review article: Electrokinetic bioremediation current knowledge and new prospects. Advances in Microbiology., 6, 57–72.

    Article  Google Scholar 

  80. Ilyas, S., & Rehman, A. (2013). Decolorization and detoxification of synozol red HF-6BN azo dye, by Aspergillus niger and Nigrospora sp. Iranian Journal of Environmental Health Science & Engineering., 10, 1–9.

    Article  Google Scholar 

  81. Asses, N., Ayed, L., Hkiri, N., & Hamdi, M. (2018). Congo red decolorization and detoxification by Aspergillus niger: removal mechanisms and dye degradation pathway. BioMed Research International, 18(2), 9.

    Google Scholar 

  82. Vigneshpriya, D., Krishnaveni, N., & Renganathan, S. (2019). Untreated and Sargassum wightii-treated brilliant green dye toxicity impact on microflora and Allium cepa L. Applied Water Science, 9, 1–8.

    Article  CAS  Google Scholar 

  83. Tripathy, S. K., & Patel, S. (2014). Abnormal mitosis in root meristem cells of Allium cepa L. induced by a fabric dye reactive turquoise blue (Procion MX). African Journal of Biotechnology, 13(38), 3881.

    Article  Google Scholar 

  84. Rahman, M. M., Rahman, M. F., & Nasirujjaman, K. (2017). A study on genotoxicity of textile dyeing industry effluents from Rajshahi, Bangladesh, by the Allium cepa test. Chemical Ecology, 33(5), 434–446.

    Article  CAS  Google Scholar 

  85. Pathiratne, A., Hemachandra, C. K., & De Silva, N. (2015). Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of industrial effluents originated from different industrial activities. Environmental Monitoring and Assessment, 187(12), 1–12.

    Article  CAS  Google Scholar 

  86. Sondhi, N., Bhardwaj, R., Kaur, S., Kumar, N., & Singh, B. (2008). Isolation of 24-epibrassinolide from leaves of Aegle marmelos and evaluation of its antigenotoxicity employing Allium cepa chromosomal aberration assay. Plant Growth Regulation, 54(3), 217–224.

    Article  CAS  Google Scholar 

  87. Konuk, M. L., Liman, R., & Cigerci, H. (2007). Determination of genotoxic effect of Boron on Allium cepa root meristematic cells. Pakistan Journal of Botany, 39, 73–79.

    Google Scholar 

  88. Evseeva, T. I., Geraskin, S. A., & Shuktomova, I. I. (2003). Genotoxicity and toxicity assay of water sampled from a radium production industry storage cell territory by means of Allium test. Journal of Environmental Radioactivity., 68, 235–248.

    Article  CAS  PubMed  Google Scholar 

  89. El-Ghamery, A. A. E., & Mousa, M. A. (2017). Investigation on the effect of benzyladenine on the germination, radicle growth and meristematic cells of Nigella sativa L. and Allium cepa L. Annals of Agricultural Science, 62, 11–21.

    Article  Google Scholar 

  90. Salam, A. E. A., Hussein, E. H., El-Itriby, H. A., Anwar, W. A., & Mansour, S. A. (1993). The mutagenicity of Gramoxone (paraquat) on different eukaryotic systems. Mutation Research, 319(2), 89–101.

    Article  Google Scholar 

  91. Alimba, C. G., Ogunkanmi, L. A., & Ogunmola, F. J. (2013). Cytotoxic and genotoxic assessment of textile effluent using Allium assay. Current Topics in Toxicology, 9, 65–74.

    Google Scholar 

  92. Alex, B. K., Koshy, E., & Thomas, G. (2013). Evaluation of cytotoxic and genotoxic effect of the Textile Dye Direct Brown on Allium cepa L. International Journal of Applied Nature Science, 2, 1–8.

    Google Scholar 

  93. Thirumalaisamy, R., Ameen, F., Subramanian, A., Selvankumar, T., Alwakeel, S. S., & Govarthanan, M. (2020). In-vitro and in-silico anti-inflammatory activity of Lupeol isolated from Crateva adansonii and its hidden molecular mechanism. International Journal of Peptide Research and Therapeutics, 26(4), 2179–2189.

    Article  CAS  Google Scholar 

  94. Thakuria, B., Singha, C. J., Maisnam, P., & Adhikari, S. (2015). Functional and catalytic active sites prediction and docking analysis of azoreductase enzyme in Pseudomonas putida with a variety of commercially available azodyes. African Journal of Biotechnology, 14(26), 2162–2169.

    Article  CAS  Google Scholar 

  95. Ramanathan, K., Shanthi, V., & Sethumadhavan, R. (2009). In silico identification of catalytic residues in azobenzene reductase from Bacillus subtilis and its docking studies with azo dyes. Interdisciplinary Sciences: Computational Life Sciences, 1, 290–297.

    CAS  PubMed  Google Scholar 

  96. Kiruthika, T., Poonkothai, M., Kalaiarasi, K., Ajarem, J. S., Allam, A. A., Khim, J. S., & Alaguprathana, M. (2022). Decolorization of safranin using Fissidens species and its ecotoxicological assessments: An in vitro and in silico approach. Environmental Research, 211, 113108.

    Article  CAS  PubMed  ADS  Google Scholar 

  97. Ameenudeen, S., Unnikrishnan, S., & Ramalingam, K. (2021). Statistical optimization for the efficacious degradation of reactive azo dyes using Acinetobacter baumannii JC359. Journal of Environmental Management, 279, 111512.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to place their thanks to the authorities and management of Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, for the successful conduct of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Poonkothai.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swathilakshmi, A.V., Poonkothai, M. Ecofriendly Approach on the Removal of Reactive Orange 107 from Aqueous Solutions Using Cladophora Species as a Novel Biosorbent. Mol Biotechnol 66, 500–516 (2024). https://doi.org/10.1007/s12033-023-00764-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00764-5

Keywords

Navigation