Skip to main content
Log in

Effect of L-carnitine in Ameliorating Lipopolysaccharide-Induced Cardiomyocyte Injury via MAPK Signaling

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The present study aimed to elucidate whether L-carnitine (LC) protected H9c2 cells and its underlying mechanisms. Cell counting kit-8 (CCK-8) assay was used to evaluate cell viability. Apoptosis, cell morphology, and lactate dehydrogenase (LDH) assessment were used to prove effects of lipopolysaccharide (LPS) and LC on H9c2 cells. RT-qPCR and western blot assays were hired to evaluate the mRNA and protein expression levels, respectively. ELISA assay was performed to determine the released protein levels. Reactive oxygen species (ROS) level was evaluated by immunofluorescence and flow cytometry. LC was revealed to protect H9c2 cells against LPS-induced injury as indicated by increased cell viability, reduced apoptosis ratio and LDH level. LC treatment also reduced BAX expression as well as up-regulated Bcl-2 expression under LPS treatment. Mechanically, LC reduced oxidative stress and ameliorated the mitochondrial injury through modulating extracellular signal-regulated kinase 1/2 and c-Jun N-terminal protein kinase c-Jun N-terminal protein kinase phosphorylation levels as indicated by decreased membrane potential, increased ATP production and mtDNA expression. We found that LC ameliorates LPS-induced cardiomyocyte injury by abrogating cell apoptosis ratio, ROS levels, as well as mitochondrial dysfunction via mitogen-activated protein kinase signaling. Our findings revealed a potential drug for sepsis or LPS-induced cardiomyocyte injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Deutschman, C. S., & Tracey, K. J. (2014). Sepsis: Current dogma and new perspectives. Immunity, 40, 463–475.

    Article  CAS  PubMed  Google Scholar 

  2. van Engelen, T. S. R., Wiersinga, W. J., Scicluna, B. P., & van der Poll, T. (2018). Biomarkers in sepsis. Critical Care Clinics, 34, 139–152.

    Article  PubMed  Google Scholar 

  3. Sato, R., & Nasu, M. (2015). A review of sepsis-induced cardiomyopathy. Journal of Intensive Care, 3, 48.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Li, N., Zhou, H., Wu, H., Wu, Q., Duan, M., Deng, W., & Tang, Q. (2019). STING-IRF3 contributes to lipopolysaccharide-induced cardiac dysfunction, inflammation, apoptosis and pyroptosis by activating NLRP3. Redox Biology, 24, 101215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rocca, C., De Bartolo, A., Grande, F., Rizzuti, B., Pasqua, T., Giordano, F., Granieri, M. C., Occhiuzzi, M. A., Garofalo, A., Amodio, N., Cerra, M. C., Schneider, F., Panno, M. L., Metz-Boutigue, M. H., & Angelone, T. (2021). Cateslytin abrogates lipopolysaccharide-induced cardiomyocyte injury by reducing inflammation and oxidative stress through toll like receptor 4 interaction. International Immunopharmacology, 94, 107487.

    Article  CAS  PubMed  Google Scholar 

  6. Okuhara, Y., Yokoe, S., Iwasaku, T., Eguchi, A., Nishimura, K., Li, W., Oboshi, M., Naito, Y., Mano, T., Asahi, M., Okamura, H., Masuyama, T., & Hirotani, S. (2017). Interleukin-18 gene deletion protects against sepsis-induced cardiac dysfunction by inhibiting PP2A activity. International Journal of Cardiology, 243, 396–403.

    Article  PubMed  Google Scholar 

  7. Liu, Y., Yang, W., Sun, X., Xie, L., Yang, Y., Sang, M., & Jiao, R. (2019). SS31 Ameliorates sepsis-induced heart injury by inhibiting oxidative stress and inflammation. Inflammation, 42, 2170–2180.

    Article  CAS  PubMed  Google Scholar 

  8. Liu, M., Zhang, Y., Cao, X., Shi, T., & Yan, Y. (2022). miR-197 participates in lipopolysaccharide-induced cardiomyocyte injury by modulating SIRT1. Cardiology Research and Practice, 2022, 7687154.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang, Y., Xu, X., Ceylan-Isik, A. F., Dong, M., Pei, Z., Li, Y., & Ren, J. (2014). Ablation of Akt2 protects against lipopolysaccharide-induced cardiac dysfunction: Role of Akt ubiquitination E3 ligase TRAF6. Journal of Molecular and Cellular Cardiology, 74, 76–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhu, Z., Zhang, G., Li, D., Yin, X., & Wang, T. (2022). Silencing of specificity protein 1 protects H9c2 cells against lipopolysaccharide-induced injury via binding to the promoter of chemokine CXC receptor 4 and suppressing NF-κB signaling. Bioengineered, 13, 3395–3409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liang, Z., Pan, F., Yang, Z., Wang, M., Hu, C., Shi, L., Ji, Q., & Liu, L. (2021). Interleukin-9 deficiency affects lipopolysaccharide-induced macrophage-related oxidative stress and myocardial cell apoptosis via the Nrf2 pathway both in vivo and in vitro. BioFactors, 47, 674–685.

    Article  CAS  PubMed  Google Scholar 

  12. Qiao, Y., Wang, L., Hu, T., Yin, D., He, H., & He, M. (2021). Capsaicin protects cardiomyocytes against lipopolysaccharide-induced damage via 14-3-3γ-mediated autophagy augmentation. Frontiers in Pharmacology, 12, 659015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hao, R., Su, G., Sun, X., Kong, X., Zhu, C., & Su, G. (2019). Adiponectin attenuates lipopolysaccharide-induced cell injury of H9c2 cells by regulating AMPK pathway. Acta Biochimica et Biophysica Sinica (Shanghai), 51, 168–177.

    Article  CAS  Google Scholar 

  14. Kolwicz, S. C., Jr., Purohit, S., & Tian, R. (2013). Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circulation Research, 113, 603–616.

    Article  CAS  PubMed  Google Scholar 

  15. Zang, Q., Maass, D. L., Tsai, S. J., & Horton, J. W. (2007). Cardiac mitochondrial damage and inflammation responses in sepsis. Surgical Infections (Larchmt), 8, 41–54.

    Article  Google Scholar 

  16. Sun, Y., Yao, X., Zhang, Q. J., Zhu, M., Liu, Z. P., Ci, B., Xie, Y., Carlson, D., Rothermel, B. A., Sun, Y., Levine, B., Hill, J. A., Wolf, S. E., Minei, J. P., & Zang, Q. S. (2018). Beclin-1-dependent autophagy protects the heart during sepsis. Circulation, 138, 2247–2262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fu, C. Y., Chen, J., Lu, X. Y., Zheng, M. Z., Wang, L. L., Shen, Y. L., & Chen, Y. Y. (2019). Dimethyl fumarate attenuates lipopolysaccharide-induced mitochondrial injury by activating Nrf2 pathway in cardiomyocytes. Life Sciences, 235, 116863.

    Article  CAS  PubMed  Google Scholar 

  18. Zhu, X., Sun, M., Guo, H., Lu, G., Gu, J., Zhang, L., Shi, L., Gao, J., Zhang, D., Wang, W., Liu, J., & Wang, X. (2022). Verbascoside protects from LPS-induced septic cardiomyopathy via alleviating cardiac inflammation, oxidative stress and regulating mitochondrial dynamics. Ecotoxicology and Environmental Safety, 233, 113327.

    Article  CAS  PubMed  Google Scholar 

  19. Adeva-Andany, M. M., Calvo-Castro, I., Fernández-Fernández, C., Donapetry-García, C., & Pedre-Piñeiro, A. M. (2017). Significance of l-carnitine for human health. IUBMB Life, 69, 578–594.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, Z. Y., Liu, Y. Y., Liu, G. H., Lu, H. B., & Mao, C. Y. (2018). l-Carnitine and heart disease. Life Sciences, 194, 88–97.

    Article  CAS  PubMed  Google Scholar 

  21. Ito, S., Nakashima, M., Ishikiriyama, T., Nakashima, H., Yamagata, A., Imakiire, T., Kinoshita, M., Seki, S., Kumagai, H., & Oshima, N. (2022). Effects of L-carnitine treatment on kidney mitochondria and macrophages in mice with diabetic nephropathy. Kidney & Blood Pressure Research, 47, 277–290.

    Article  CAS  Google Scholar 

  22. Wang, D. D., Mao, Y. Z., He, S. M., Yang, Y., & Chen, X. (2021). Quantitative efficacy of L-carnitine supplementation on glycemic control in type 2 diabetes mellitus patients. Expert Review of Clinical Pharmacology, 14, 919–926.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, X., Liu, C., Liu, C., Wang, Y., Zhang, W., & Xing, Y. (2019). Trimetazidine and l-carnitine prevent heart aging and cardiac metabolic impairment in rats via regulating cardiac metabolic substrates. Experimental Gerontology, 119, 120–127.

    Article  CAS  PubMed  Google Scholar 

  24. da Silva, G. S., de Souza, C. W., da Silva, L., Maciel, G., Huguenin, A. B., de Carvalho, M., Costa, B., da Silva, G., da Costa, C., D’Ippolito, J. A., Colafranceschi, A., Scalco, F., & Boaventura, G. (2017). Effect of L-carnitine supplementation on reverse remodeling in patients with ischemic heart disease undergoing coronary artery bypass grafting: A randomized, placebo-controlled trial. Annals of Nutrition & Metabolism, 70, 106–110.

    Article  Google Scholar 

  25. Emran, T., Chowdhury, N. I., Sarker, M., Bepari, A. K., Hossain, M., Rahman, G. M. S., & Reza, H. M. (2021). L-carnitine protects cardiac damage by reducing oxidative stress and inflammatory response via inhibition of tumor necrosis factor-alpha and interleukin-1beta against isoproterenol-induced myocardial infarction. Biomedicine & Pharmacotherapy, 143, 112139.

    Article  CAS  Google Scholar 

  26. Malik, A. N., Shahni, R., Rodriguez-de-Ledesma, A., Laftah, A., & Cunningham, P. (2011). Mitochondrial DNA as a non-invasive biomarker: Accurate quantification using real time quantitative PCR without co-amplification of pseudogenes and dilution bias. Biochemical and Biophysical Research Communications, 412, 1–7.

    Article  CAS  PubMed  Google Scholar 

  27. Eaton, J. S., Lin, Z. P., Sartorelli, A. C., Bonawitz, N. D., & Shadel, G. S. (2007). Ataxia-telangiectasia mutated kinase regulates ribonucleotide reductase and mitochondrial homeostasis. The Journal of Clinical Investigation, 117, 2723–2734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dai, S., Ye, B., Zhong, L., Chen, Y., Hong, G., Zhao, G., Su, L., & Lu, Z. (2021). GSDMD mediates LPS-induced septic myocardial dysfunction by regulating ROS-dependent NLRP3 inflammasome activation. Frontiers in Cell and Developmental Biology, 9, 779432.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tsikas, D. (2017). Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Analytical Biochemistry, 524, 13–30.

    Article  CAS  PubMed  Google Scholar 

  30. Mahdi, M. A., Yousefi, S. R., Jasim, L. S., & Salavati-Niasari, M. (2022). Green synthesis of DyBa2Fe3O7.988/DyFeO3 nanocomposites using almond extract with dual eco-friendly applications: Photocatalytic and antibacterial activities. International Journal of Hydrogen Energy, 47, 14319–14330.

    Article  CAS  Google Scholar 

  31. Yousefi, S. R., Ghanbari, M., Amiri, O., Marzhoseyni, Z., Mehdizadeh, P., Hajizadeh-Oghaz, M., & Salavati-Niasari, M. (2021). Dy2BaCuO5/Ba4DyCu3O9.09 S-scheme heterojunction nanocomposite with enhanced photocatalytic and antibacterial activities. Journal of the American Ceramic Society, 104, 2952–2965.

    Article  CAS  Google Scholar 

  32. Yousefi, S. R., Alshamsi, H. A., Amiri, O., & Salavati-Niasari, M. (2021). Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. Journal of Molecular Liquids, 337, 116405.

    Article  CAS  Google Scholar 

  33. Bai, T., Hu, X., Zheng, Y., Wang, S., Kong, J., & Cai, L. (2016). Resveratrol protects against lipopolysaccharide-induced cardiac dysfunction by enhancing SERCA2a activity through promoting the phospholamban oligomerization. American Journal of Physiology. Heart and Circulatory Physiology, 311, H1051-h1062.

    Article  PubMed  Google Scholar 

  34. Ren, G., Zhou, Q., Lu, M., & Wang, H. (2021). Rosuvastatin corrects oxidative stress and inflammation induced by LPS to attenuate cardiac injury by inhibiting the NLRP3/TLR4 pathway. Canadian Journal of Physiology and Pharmacology, 99, 964–973.

    Article  CAS  PubMed  Google Scholar 

  35. Song, Y. X., Ou, Y. M., & Zhou, J. Y. (2020). Gracillin inhibits apoptosis and inflammation induced by lipopolysaccharide (LPS) to alleviate cardiac injury in mice via improving miR-29a. Biochemical and Biophysical Research Communications, 523, 580–587.

    Article  CAS  PubMed  Google Scholar 

  36. Li, M., Xu, S., Geng, Y., Sun, L., Wang, R., Yan, Y., Wang, H., Li, Y., Yi, Q., Zhang, Y., Hao, J., Deng, C., Li, W., & Xue, L. (2019). The protective effects of L-carnitine on myocardial ischaemia-reperfusion injury in patients with rheumatic valvular heart disease undergoing CPB surgery are associated with the suppression of NF-κB pathway and the activation of Nrf2 pathway. Clinical and Experimental Pharmacology and Physiology, 46, 1001–1012.

    Article  CAS  PubMed  Google Scholar 

  37. Fathizadeh, H., Milajerdi, A., Reiner, Ž, Amirani, E., Asemi, Z., Mansournia, M. A., & Hallajzadeh, J. (2020). The effects of L-carnitine supplementation on indicators of inflammation and oxidative stress: A systematic review and meta-analysis of randomized controlled trials. Journal of Diabetes and Metabolic Disorders, 19, 1879–1894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Miguel-Carrasco, J. L., Mate, A., Monserrat, M. T., Arias, J. L., Aramburu, O., & Vázquez, C. M. (2008). The role of inflammatory markers in the cardioprotective effect of L-carnitine in L-NAME-induced hypertension. American Journal of Hypertension, 21, 1231–1237.

    Article  CAS  PubMed  Google Scholar 

  39. Qiao, N., Chen, H., Du, P., Kang, Z., Pang, C., Liu, B., Zeng, Q., Pan, J., Zhang, H., Mehmood, K., Tang, Z., & Li, Y. (2021). Acetyl-L-carnitine induces autophagy to promote mouse spermatogonia cell recovery after heat stress damage. BioMed Research International, 2021, 8871328.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zheng, H. L., Zhang, H. Y., Zhu, C. L., Li, H. Y., Cui, S., Jin, J., Piao, S. G., Jiang, Y. J., Xuan, M. Y., Jin, J. Z., Jin, Y. S., Lee, J. P., Chung, B. H., Choi, B. S., Yang, C. W., & Li, C. (2021). L-Carnitine protects against tacrolimus-induced renal injury by attenuating programmed cell death via PI3K/AKT/PTEN signaling. Acta Pharmacologica Sinica, 42, 77–87.

    Article  CAS  PubMed  Google Scholar 

  41. Xie, C., Yi, J., Lu, J., Nie, M., Huang, M., Rong, J., Zhu, Z., Chen, J., Zhou, X., Li, B., Chen, H., Lu, N., & Shu, X. (2018). N-acetylcysteine reduces ROS-mediated oxidative DNA damage and PI3K/Akt pathway activation induced by helicobacter pylori infection. Oxidative Medicine and Cellular Longevity, 2018, 1874985.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yan, H., Du, J., Chen, X., Yang, B., He, Q., Yang, X., & Luo, P. (2019). ROS-dependent DNA damage contributes to crizotinib-induced hepatotoxicity via the apoptotic pathway. Toxicology and Applied Pharmacology, 383, 114768.

    Article  CAS  PubMed  Google Scholar 

  43. Suski, J. M., Lebiedzinska, M., Bonora, M., Pinton, P., Duszynski, J., & Wieckowski, M. R. (2012). Relation between mitochondrial membrane potential and ROS formation. Methods in Molecular Biology, 810, 183–205.

    Article  CAS  PubMed  Google Scholar 

  44. Irato, P., & Santovito, G. (2021). Enzymatic and non-enzymatic molecules with antioxidant function. Antioxidants (Basel), 10, 579.

    Article  CAS  PubMed  Google Scholar 

  45. Zhou, B., & Tian, R. (2018). Mitochondrial dysfunction in pathophysiology of heart failure. The Journal of Clinical Investigation, 128, 3716–3726.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lee, J. K., & Kim, N. J. (2017). Recent advances in the inhibition of p38 MAPK as a potential strategy for the treatment of Alzheimer’s disease. Molecules, 22, 1287.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Guo, Y. J., Pan, W. W., Liu, S. B., Shen, Z. F., Xu, Y., & Hu, L. L. (2020). ERK/MAPK signalling pathway and tumorigenesis. Experimental and Therapeutic Medicine, 19, 1997–2007.

    PubMed  PubMed Central  Google Scholar 

  48. Zheng, Y., Han, Z., Zhao, H., & Luo, Y. (2020). MAPK: A key player in the development and progression of stroke. CNS & Neurological Disorders: Drug Targets, 19, 248–256.

    Article  CAS  Google Scholar 

  49. Lu, M., Wang, Y., & Zhan, X. (2019). The MAPK pathway-based drug therapeutic targets in pituitary adenomas. Frontiers in Endocrinology (Lausanne), 10, 330.

    Article  Google Scholar 

  50. Yoshida, T., Das, N. A., Carpenter, A. J., Izadpanah, R., Kumar, S. A., Gautam, S., Bender, S. B., Siebenlist, U., & Chandrasekar, B. (2020). Minocycline reverses IL-17A/TRAF3IP2-mediated p38 MAPK/NF-κB/iNOS/NO-dependent cardiomyocyte contractile depression and death. Cellular Signalling, 73, 109690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, B., Xu, H., Kong, J., Liu, D., Qin, W., & Bai, W. (2021). Krüppel-Like factor 15 reduces ischemia-induced apoptosis involving regulation of p38/MAPK signaling. Human Gene Therapy, 32, 1471–1480.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, Z. D., Yang, Y. J., Liu, X. W., Qin, Z., Li, S. H., & Li, J. Y. (2021). Aspirin eugenol ester ameliorates paraquat-induced oxidative damage through ROS/p38-MAPK-mediated mitochondrial apoptosis pathway. Toxicology, 453, 152721.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

LZ, LX, TW, D Z: designed the study, performed the research and analyzed the data. LZ: wrote the paper.

Corresponding author

Correspondence to Duo Zhao.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Xiu, L., Wang, T. et al. Effect of L-carnitine in Ameliorating Lipopolysaccharide-Induced Cardiomyocyte Injury via MAPK Signaling. Mol Biotechnol 66, 79–89 (2024). https://doi.org/10.1007/s12033-023-00731-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00731-0

Keywords

Navigation