Skip to main content

Advertisement

Log in

Silencing of YTHDF1 Attenuates Cerebral Stroke by Inducing PTEN Degradation and Activating the PTEN/AKT/mTOR Pathway

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

N6-methyladenosine (m6A) methylation regulates pathological processes of cerebral stroke, which can lead to disability and death. Herein, we explored the role of a m6A “reader” YTHDF1 in stroke. MCAO (middle cerebral artery occlusion) rat model and hypoxia/reoxygenation (H/R)-induced neurocytes cell model were established. TTC staining assay assessed the infarction area and TUNEL assay analyzed apoptosis. Neurological score was analyzed to evaluate the brain function. Cell counting kit-8, LDH release, and flow cytometry assessed cellular proliferation, cell death, and cell apoptosis in vitro. The expression of YTHDF1, PTEN, and the factors in the PI3K/AKT/mTOR pathway was measured using western blot. The interaction between YTHDF1 and PTEN was confirmed luciferase assay and RNA immunoprecipitation assay. The results indicated that YTHDF1 was upregulated in the brain tissues of MCAO mice and H/R-treated cells. Knockdown of YTHDF1 inhibited the infarct area, neuron damage, and apoptosis. Additionally, YTHDF1 depletion promoted viability and inhibited apoptosis of H/R-treated cells. Moreover, YTHDF1 inactivated the PI3K/AKT/mTOR pathway. Mechanistically, YTHDF1 binds to PTEN to increase PTEN mRNA stability. Overexpressing PTEN rescued the effects of YTHDF1 depletion on cell viability and apoptosis. In conclusion, silencing of YTHDF1 decelerated the progression of cerebral stroke through promoting PTEN degradation and activating the PTEN/AKT/mTOR pathway, suggesting that YTHDF1 has the potential to be a therapeutic target for stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Tan, C., Wang, Z., Zheng, M., Zhao, S., Shichinohe, H., & Houkin, K. (2021). Responses of immune organs after cerebral ischemic stroke. Journal of Nippon Medical School, 88(3), 228–237. https://doi.org/10.1272/jnms.JNMS.2021_88-308

    Article  CAS  PubMed  Google Scholar 

  2. Radak, D., Katsiki, N., Resanovic, I., Jovanovic, A., Sudar-Milovanovic, E., Zafirovic, S., Mousad, S. A., & Isenovic, E. R. (2017). Apoptosis and acute brain ischemia in ischemic stroke. Current Vascular Pharmacology, 15(2), 115–122. https://doi.org/10.2174/1570161115666161104095522

    Article  CAS  PubMed  Google Scholar 

  3. Wang, H. L., Zhou, Q. H., Xu, M. B., Zhou, X. L., & Zheng, G. Q. (2017). Astragaloside IV for experimental focal cerebral ischemia: Preclinical evidence and possible mechanisms. Oxidative Medicine and Cellular Longevity, 2017, 8424326. https://doi.org/10.1155/2017/8424326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Liu, C., Gu, L., Deng, W., Meng, Q., Li, N., Dai, G., Yu, S., & Fang, H. (2022). N6-Methyladenosine RNA methylation in cardiovascular diseases. Frontiers in Cardiovascular Medicine, 9, 887838. https://doi.org/10.3389/fcvm.2022.887838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Chang, H., Yang, J., Wang, Q., Zhao, J., & Zhu, R. (2022). Role of N6-methyladenosine modification in pathogenesis of ischemic stroke. Expert Review of Molecular Diagnostics, 22(3), 295–303. https://doi.org/10.1080/14737159.2022.2049246

    Article  CAS  PubMed  Google Scholar 

  6. Wang, T., Kong, S., Tao, M., & Ju, S. (2020). The potential role of RNA N6-methyladenosine in cancer progression. Molecular Cancer, 19(1), 88. https://doi.org/10.1186/s12943-020-01204-7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Zhang, N., Zuo, Y., Peng, Y., & Zuo, L. (2021). Function of N6-methyladenosine modification in tumors. Journal of Oncology, 2021, 6461552. https://doi.org/10.1155/2021/6461552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Liao, S., Sun, H., & Xu, C. (2018). YTH domain: a family of N6-methyladenosine (m6A) readers. Genomics, Proteomics & Bioinformatics, 16(2), 99–107. https://doi.org/10.1016/j.gpb.2018.04.002

    Article  Google Scholar 

  9. Slobodin, B., Han, R., Calderone, V., Vrielink, J. A. F. O., Loayza-Puch, F., Elkon, R., & Agami, R. (2017). Transcription impacts the efficiency of mRNA translation via co-transcriptional N6-adenosine methylation. Cell, 169(2), 326-337.e12. https://doi.org/10.1016/j.cell.2017.03.031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Wang, X., Zhao, B. S., Roundtree, I. A., Lu, Z., Han, D., Ma, H., Weng, X., Chen, K., Shi, H., & He, C. (2015). N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell, 161(6), 1388–1399. https://doi.org/10.1016/j.cell.2015.05.014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Li, J., Chen, K., Dong, X., Xu, Y., Sun, Q., Wang, H., Chen, Z., Liu, C., Liu, R., Yang, Z., Mei, X., Zhang, R., Chang, L., Tian, Z., Chen, J., Liang, K., He, C., & Luo, M. (2022). YTHDF1 promotes mRNA degradation via YTHDF1-AGO2 interaction and phase separation. Cell Proliferation, 55(1), e13157. https://doi.org/10.1111/cpr.13157

    Article  CAS  PubMed  Google Scholar 

  12. Li, Y., Li, H., Luo, Y., Li, X., Chen, Z., Zhang, W., Li, F., & Ling, L. (2022). The alteration profiles of m6A-tagged circRNAs in the Peri-infarct cortex after cerebral ischemia in mice. Frontiers in Neuroscience, 16, 869081. https://doi.org/10.3389/fnins.2022.869081

    Article  PubMed Central  PubMed  Google Scholar 

  13. Tang, H., Gamdzyk, M., Huang, L., Gao, L., Lenahan, C., Kang, R., Tang, J., Xia, Y., & Zhang, J. H. (2020). Delayed recanalization after MCAO ameliorates ischemic stroke by inhibiting apoptosis via HGF/c-Met/STAT3/Bcl-2 pathway in rats. Experimental Neurology, 330, 113359. https://doi.org/10.1016/j.expneurol.2020.113359

    Article  CAS  PubMed  Google Scholar 

  14. Guo, J. M., Liu, A. J., Zang, P., Dong, W. Z., Ying, L., Wang, W., Xu, P., Song, X. R., Cai, J., Zhang, S. Q., Duan, J. L., Mehta, J. L., & Su, D. F. (2013). ALDH2 protects against stroke by clearing 4-HNE. Cell Research, 23(7), 915–930. https://doi.org/10.1038/cr.2013.69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Zhang, Z., Wang, Q., Zhao, X., Shao, L., Liu, G., Zheng, X., Xie, L., Zhang, Y., Sun, C., & Xu, R. (2020). YTHDC1 mitigates ischemic stroke by promoting Akt phosphorylation through destabilizing PTEN mRNA. Cell Death & Disease, 11(11), 977. https://doi.org/10.1038/s41419-020-03186-2

    Article  CAS  Google Scholar 

  16. Feng, C., Wan, H., Zhang, Y., Yu, L., Shao, C., He, Y., Wan, H., & Jin, W. (2020). Neuroprotective effect of Danhong injection on cerebral ischemia-reperfusion injury in rats by activation of the PI3K-Akt pathway. Frontiers in Pharmacology, 11, 298. https://doi.org/10.3389/fphar.2020.00298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Wang, L., Ding, J., Zhu, C., Guo, B., Yang, W., He, W., Li, X., Wang, Y., Li, W., Wang, F., & Sun, T. (2021). Semaglutide attenuates seizure severity and ameliorates cognitive dysfunction by blocking the NLR family pyrin domain containing 3 inflammasome in pentylenetetrazole-kindled mice. International Journal of Molecular Medicine, 48(6), 219. https://doi.org/10.3892/ijmm.2021.5052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Wang, X., Tian, L., Li, Y., Wang, J., Yan, B., Yang, L., Li, Q., Zhao, R., Liu, M., Wang, P., & Sun, Y. (2021). RBM15 facilitates laryngeal squamous cell carcinoma progression by regulating TMBIM6 stability through IGF2BP3 dependent. Journal of Experimental & Clinical Cancer Research, 40(1), 80. https://doi.org/10.1186/s13046-021-01871-4

    Article  CAS  Google Scholar 

  19. Chen, Y., Zhao, Y., Chen, J., Peng, C., Zhang, Y., Tong, R., Cheng, Q., Yang, B., Feng, X., Lu, Y., Xie, H., Zhou, L., Wu, J., & Zheng, S. (2020). ALKBH5 suppresses malignancy of hepatocellular carcinoma via m6A-guided epigenetic inhibition of LYPD1. Molecular Cancer, 19(1), 123. https://doi.org/10.1186/s12943-020-01239-w

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Xu, K., Mo, Y., Li, D., Yu, Q., Wang, L., Lin, F., Kong, C., Balelang, M. F., Zhang, A., Chen, S., Dai, Q., & Wang, J. (2020). N6-methyladenosine demethylases Alkbh5/Fto regulate cerebral ischemia-reperfusion injury. Therapeutic Advances in Chronic Disease, 11, 2040622320916024. https://doi.org/10.1177/2040622320916024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Diao, M. Y., Zhu, Y., Yang, J., Xi, S. S., Wen, X., Gu, Q., & Hu, W. (2020). Hypothermia protects neurons against ischemia/reperfusion-induced pyroptosis via m6A-mediated activation of PTEN and the PI3K/Akt/GSK-3β signaling pathway. Brain Research Bulletin, 159, 25–31. https://doi.org/10.1016/j.brainresbull.2020.03.011

    Article  CAS  PubMed  Google Scholar 

  22. Yi, D., Wang, Q., Zhao, Y., Song, Y., You, H., Wang, J., Liu, R., Shi, Z., Chen, X., & Luo, Q. (2021). Alteration of N6-methyladenosine mRNA methylation in a rat model of cerebral ischemia-reperfusion injury. Frontiers in Neuroscience, 15, 605654. https://doi.org/10.3389/fnins.2021.605654

    Article  PubMed Central  PubMed  Google Scholar 

  23. Zheng, L., Tang, X., Lu, M., Sun, S., Xie, S., Cai, J., & Zan, J. (2020). microRNA-421-3p prevents inflammatory response in cerebral ischemia/reperfusion injury through targeting m6A Reader YTHDF1 to inhibit p65 mRNA translation. International Immunopharmacology, 88, 106937. https://doi.org/10.1016/j.intimp.2020.106937

    Article  CAS  PubMed  Google Scholar 

  24. Xing, J., He, Y. C., Wang, K. Y., Wan, P. Z., & Zhai, X. Y. (2022). Involvement of YTHDF1 in renal fibrosis progression via up-regulating YAP. The FASEB Journal, 36(2), e22144. https://doi.org/10.1096/fj.202100172RR

    Article  CAS  PubMed  Google Scholar 

  25. Wang, L., Yu, P., Wang, J., Xu, G., Wang, T., Feng, J., Bei, Y., Xu, J., Wang, H., Das, S., & Xiao, J. (2022). Downregulation of circ-ZNF609 promotes heart repair by modulating RNA N6-methyladenosine-modified yap expression. Research (Wash D C)., 2022, 9825916. https://doi.org/10.34133/2022/9825916

    Article  CAS  PubMed  Google Scholar 

  26. Li, A., Qiu, M., Zhou, H., Wang, T., & Guo, W. (2017). PTEN, insulin resistance and cancer. Current Pharmaceutical Design, 23(25), 3667–3676. https://doi.org/10.2174/1381612823666170704124611

    Article  CAS  PubMed  Google Scholar 

  27. Pan, Q., Liu, Y., Wang, G., Wen, Z., & Wang, Y. (2020). MTMR14 protects against cerebral stroke through suppressing PTEN-regulated autophagy. Biochemical and Biophysical Research Communications, 529(4), 1045–1052. https://doi.org/10.1016/j.bbrc.2020.06.096

    Article  CAS  PubMed  Google Scholar 

  28. Guan, X., Zhang, Y., Gareev, I., Beylerli, O., Li, X., Lu, G., Lv, L., & Hai, X. (2021). MiR-499a prevents astrocytes mediated inflammation in ischemic stroke by targeting PTEN. Noncoding RNA Research, 6(3), 146–152. https://doi.org/10.1016/j.ncrna.2021.09.002

    Article  CAS  Google Scholar 

  29. Pan, R., Xie, Y., Fang, W., Liu, Y., & Zhang, Y. (2022). USP20 mitigates ischemic stroke in mice by suppressing neuroinflammation and neuron death via regulating PTEN signal. International Immunopharmacology, 103, 107840. https://doi.org/10.1016/j.intimp.2021.107840

    Article  CAS  PubMed  Google Scholar 

  30. Xing, X., Guo, S., Zhang, G., Liu, Y., Bi, S., Wang, X., & Lu, Q. (2020). miR-26a-5p protects against myocardial ischemia/reperfusion injury by regulating the PTEN/PI3K/AKT signaling pathway. Brazilian Journal of Medical and Biological Research, 53(2), e9106. https://doi.org/10.1590/1414-431X20199106

    Article  PubMed Central  PubMed  Google Scholar 

  31. Ren, X., Wang, Z., & Guo, C. (2021). MiR-195-5p ameliorates cerebral ischemia-reperfusion injury by regulating the PTEN-AKT signaling pathway. Neuropsychiatric Disease and Treatment, 17, 1231–1242. https://doi.org/10.2147/NDT.S297975

    Article  PubMed Central  PubMed  Google Scholar 

  32. Fang, Y., Ji, W., & Yan, C. (2022). Research progress of PI3K/PTEN/AKT signaling pathway associated with renal cell carcinoma. Disease Markers, 2022, 1195875. https://doi.org/10.1155/2022/1195875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Gu, C., Zhang, Q., Li, Y., Li, R., Feng, J., Chen, W., Ahmed, W., Soufiany, I., Huang, S., Long, J., & Chen, L. (2022). The PI3K/AKT pathway-the potential key mechanisms of traditional Chinese medicine for stroke. Frontier Medicine (Lausanne), 9, 900809. https://doi.org/10.3389/fmed.2022.900809

    Article  Google Scholar 

  34. Luo, X., Cao, M., Gao, F., & He, X. (2021). YTHDF1 promotes hepatocellular carcinoma progression via activating PI3K/AKT/mTOR signaling pathway and inducing epithelial-mesenchymal transition. Experimental Hematology & Oncology, 10(1), 35. https://doi.org/10.1186/s40164-021-00227-0

    Article  CAS  Google Scholar 

  35. Yan, J., Huang, X., Zhang, X., Chen, Z., Ye, C., Xiang, W., & Huang, Z. (2020). LncRNA LINC00470 promotes the degradation of PTEN mRNA to facilitate malignant behavior in gastric cancer cells. Biochemical and Biophysical Research Communications, 521(4), 887–893. https://doi.org/10.1016/j.bbrc.2019.11.016

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenfei Yu or Ying Li.

Ethics declarations

Competing Interests

The authors declare that there are no conflict of interests.

Ethical Approval

The study involving animal operations was approved by the Ethics Committee of the hospital.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., An, P., Han, F. et al. Silencing of YTHDF1 Attenuates Cerebral Stroke by Inducing PTEN Degradation and Activating the PTEN/AKT/mTOR Pathway. Mol Biotechnol 65, 822–832 (2023). https://doi.org/10.1007/s12033-022-00575-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00575-0

Keywords

Navigation