Skip to main content
Log in

Genetic Diversity Assessment of Iranian Kentucky Bluegrass Accessions: II. Nuclear DNA Content and Its Association with Morphological and Geographical Features

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Poa pratensis L. is a perennial turfgrass with high regeneration and fertility, resistance to cold and drought, and quick colonization. By facultative apomixis, this plant can create a wide range of ploidy levels (2n = 22 to 2n = 154), resulting in a wide range of chromosomal numbers and sexual and apomictic reproductive diversity. The plant materials included fifty accessions from Iran’s Center, South, North, North-East, North-West, and West ecoregions. UPOV standards were used to measure the qualities that were researched. The squash technique of chromosome counting revealed that Iranian Kentucky bluegrass accessions had chromosomal counts ranging from 24 to 87. The relative sizes of the 2C genomes were measured using laser flow cytometry. The range of DNA content was fairly wide, ranging from 4.92 to 11.52 pg. DNA content has a strong positive correlation with elevation, a moderately positive correlation with flag leaf length and leaf sheath width, and a negative correlation with inflorescence anthocyanin color and leaf anthocyanin color. The genotypes and ecological zones of this plant in Iran were distinguished based on morphological diversity and DNA content. The results from this study could be useful in identifying and studying wild Kentucky bluegrass genotypes. It aids in predicting the location of rare genotypes used as breeding materials. It can also increase the plant’s variability for future generations by introducing new ecotypes, with particular genomic and morphological traits, to previously cultivated populations. We expect that the findings of this study will aid in understanding the evolution of this plant in the context of Iran’s climatic variety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Soreng, R. J., & Barrie, F. R. (1999). Proposal to conserve the name Poa pratensis (Gramineae) with a conserved type. Taxon, 48(1), 157–159. https://doi.org/10.2307/1224640

    Article  Google Scholar 

  2. Bushman, B. S., Joshi, A., & Johnson, P. G. (2018). Molecular markers improve breeding efficiency in apomictic Poa pratensis L. Agronomy, 8(2), 17. https://doi.org/10.3390/agronomy8020017

    Article  CAS  Google Scholar 

  3. Gan, L., Di, R., Chao, Y., Han, L., Chen, X., Wu, C., & Yin, S. (2016). De novo transcriptome analysis for Kentucky Bluegrass dwarf mutants induced by space mutation. PLoS ONE, 11(3), e0151768. https://doi.org/10.1371/journal.pone.0151768

    Article  CAS  Google Scholar 

  4. Meyer, W. A., Hoffman, L., & Bonos, S. A. (2017). Breeding cool-season turfgrass cultivars for stress tolerance and sustainability in a changing environment. International Turfgrass Society Research Journal, 13(1), 3–10. https://doi.org/10.2134/itsrj2016.09.0806

    Article  Google Scholar 

  5. Puyang, X., An, M., Han, L., & Zhang, X. (2015). Protective effect of spermidine on salt stress induced oxidative damage in two Kentucky bluegrass (Poa pratensis L.) cultivars. Ecotoxicology and Environmental Safety, 117(1), 96–106. https://doi.org/10.1016/j.ecoenv.2015.03.023

    Article  CAS  Google Scholar 

  6. Bashaw, E., & Funk, C. R. (1987). Apomictic grasses. Principles of cultivar development (pp. 40–82). Macmillan.

    Google Scholar 

  7. Huff, D. R., Casler, M., & Duncan, R. (2003). Kentucky bluegrass. Turfgrass biology, genetics, and breeding (pp. 27–38). Wiley.

    Google Scholar 

  8. Zhao, Y., Yu, F., Liu, R., & Dou, Q. (2017). Isolation and characterization of chromosomal markers in Poa pratensis. Molecular Cytogenetics, 10(1), 1–9. https://doi.org/10.1186/s13039-017-0307-7

    Article  CAS  Google Scholar 

  9. Cai, H., Yamada, T., & Kole, C. (2013). Genetics, genomics and breeding of forage crops. CRC Press.

    Google Scholar 

  10. Huff, D. R. (2010). Bluegrasses. Fodder crops and amenity grasses (pp. 345–379). Springer.

    Chapter  Google Scholar 

  11. Raggi, L., Bitocchi, E., Russi, L., Marconi, G., Sharbel, T. F., Veronesi, F., & Albertini, E. (2015). Understanding genetic diversity and population structure of a Poa pratensis worldwide collection through morphological, nuclear and chloroplast diversity analysis. PLoS ONE, 10(4), e0124709. https://doi.org/10.1371/journal.pone.0124709

    Article  CAS  Google Scholar 

  12. Pellicer, J., Hidalgo, O., Dodsworth, S., & Leitch, I. J. (2018). Genome size diversity and its impact on the evolution of land plants. Genes, 9(2), 88. https://doi.org/10.3390/genes9020088

    Article  CAS  Google Scholar 

  13. Suda, J., Meyerson, L. A., Leitch, I. J., & Pyšek, P. (2015). The hidden side of plant invasions: The role of genome size. New Phytologist, 205(3), 994–1007. https://doi.org/10.1111/nph.13107

    Article  Google Scholar 

  14. Faizullah, L., Morton, J. A., Hersch-Green, E. I., Walczyk, A. M., Leitch, A. R., & Leitch, I. J. (2021). Exploring environmental selection on genome size in angiosperms. Trends in Plant Science. https://doi.org/10.1016/j.tplants.2021.06.001

    Article  Google Scholar 

  15. Castelli, M., Miller, C. H., & Schmidt-Lebuhn, A. N. (2017). Polyploidization and genome size evolution in Australian billy buttons (Craspedia, Asteraceae: Gnaphalieae). International Journal of Plant Sciences, 178(5), 352–361. https://doi.org/10.1086/691460

    Article  Google Scholar 

  16. Zhang, J., Wang, M., Guo, Z., Guan, Y., Guo, Y., & Yan, X. (2019). Variation in ploidy level and genome size of Cynodon dactylon (L.) Pers. along a latitudinal gradient. Folia Geobotanica, 54(3), 267–278. https://doi.org/10.1007/s12224-019-09359-y

    Article  Google Scholar 

  17. Doležel, J., Greilhuber, J., & Suda, J. (2007). Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols, 2(9), 2233–2244. https://doi.org/10.1038/nprot.2007.310

    Article  CAS  Google Scholar 

  18. Eaton, T., Curley, J., Williamson, R., & Jung, G. (2004). Determination of the level of variation in polyploidy among Kentucky bluegrass cultivars by means of flow cytometry. Crop Science, 44(6), 2168–2174. https://doi.org/10.2135/cropsci2004.2168

    Article  Google Scholar 

  19. Grossman, A. Y., Andrade, M. H. M. L., Chaves, A. L. A., Mendes Ferreira, M. T., Techio, V. H., Lopez, Y., Begcy, K., Kenworthy, K. E., & Rios, E. F. (2021). Ploidy Level and genetic parameters for phenotypic traits in bermudagrass (Cynodon spp.) Germplasm. Agronomy, 11(5), 912. https://doi.org/10.3390/agronomy11050912

    Article  CAS  Google Scholar 

  20. Speckmann, G., & Van Dijk, G. (1972). Chromosome number and plant morphology in some ecotypes of Poa pratensis L. Euphytica, 21(2), 171–180. https://doi.org/10.1007/BF00036757

    Article  Google Scholar 

  21. Meeks, M., & Chandra, A. (2015). The application of flow cytometry and a thioredoxin-like nuclear gene for breeding Poa arachnifera x Poa pratensis hybrids. Plant Breeding, 134(5), 612–622. https://doi.org/10.1139/g04-102

    Article  CAS  Google Scholar 

  22. Murovec, J., Kastelec, D., Vilhar, B., Cop, J., & Bohanec, B. (2009). High variability of nuclear DNA content in cultivars and natural populations of Poa pratensis L. in relation to morphological characters. Acta Biologica Cracoviensia, 51(2), 45–52.

    Google Scholar 

  23. Siljak-Yakovlev, S., Lamy, F., Takvorian, N., Valentin, N., Gouesbet, V., Hennion, F., & Robert, T. (2020). Genome size and chromosome number of ten plant species from Kerguelen Islands. Polar Biology, 43(12), 1985–1999. https://doi.org/10.1007/s00300-020-02755-7

    Article  Google Scholar 

  24. Wieners, R. R., Fei, S.-Z., & Johnson, R. C. (2006). Characterization of a USDA Kentucky bluegrass (Poa pratensis L.) core collection for reproductive mode and DNA content by flow cytometry. Genetic Resources and Crop Evolution, 53(8), 1531–1541. https://doi.org/10.1007/s10722-005-7766-0

    Article  Google Scholar 

  25. Arumuganathan, K., Tallury, S., Fraser, M., Bruneau, A., & Qu, R. (1999). Nuclear DNA content of thirteen turfgrass species by flow cytometry. Crop Science, 39(5), 1518–1521. https://doi.org/10.2135/cropsci1999.3951518x

    Article  Google Scholar 

  26. Kelley, A. M., Johnson, P. G., Waldron, B. L., & Peel, M. D. (2009). A survey of apomixis and ploidy levels among Poa L. (Poaceae) using flow cytometry. Crop Science, 49(4), 1395. https://doi.org/10.2135/cropsci2008.09.0553

    Article  Google Scholar 

  27. Greilhuber, J., & Leitch, I. J. (2013). Genome size and the phenotype. Plant genome diversity (Vol. 2, pp. 323–344). Springer.

    Chapter  Google Scholar 

  28. Bennett, M. D. (1987). Variation in genomic form in plants and its ecological implications. New Phytologist, 106(s1), 177–200. https://doi.org/10.1111/j.1469-8137.1987.tb04689.x

    Article  Google Scholar 

  29. MacGillivray, C., & Grime, J. (1995). Genome size predicts frost resistance in British herbaceous plants: Implications for rates of vegetation response to global warming. Functional Ecology, 9(2), 320–325. https://doi.org/10.2307/2390580

    Article  Google Scholar 

  30. Poggio, L., Burghardt, A. D., & Hunziker, J. (1989). Nuclear DNA variation in diploid and polyploid taxa of Larrea (Zygophyllaceae). Heredity, 63(3), 321–328. https://doi.org/10.1038/hdy.1989.105

    Article  Google Scholar 

  31. Bennett, M. D. (1976). DNA amount, latitude, and crop plant distribution. Environmental and Experimental Botany, 16(2–3), 93–108. https://doi.org/10.1016/0098-8472(76)90001-0

    Article  CAS  Google Scholar 

  32. Bor, N. (1970). Gramineae. In K. H. Rechinger (Ed.), Flora Iranica (p. 30). GrassWorld.

  33. Fard, J. R., Zamani, Z., Moghaddam, M. R. F., & Kafi, M. (2012). Evaluation of genetic diversity among some genotypes of Kentucky bluegrass by RAPD molecular markers. Horticulture, Environment, and Biotechnology, 53(4), 298–303. https://doi.org/10.1007/s13580-012-0120-5

    Article  Google Scholar 

  34. Kavousi, M., Assadi, M., & Nejadsattari, T. (2015). Taxonomic revision of the genus Poa L. in Iran, new additions to Flora Iranica, and a new identification key. Turkish Journal of Botany, 39(1), 105–127. https://doi.org/10.3906/bot-1311-31

    Article  Google Scholar 

  35. (CPVO), C.P.V.O., (2017). Protocol for tests on distinctness, uniformity and stability of Poa pratensis.

  36. UPOV/TG/33/7. (2014). Poa pratensis L. (POAAA_PRA). Retrieved from https://www.upov.int/edocs/tgdocs/en/tg033.pdf.

  37. Costich, D. E., Friebe, B., Sheehan, M. J., Casler, M. D., & Buckler, E. S. (2010). Genome-size variation in switchgrass (Panicum virgatum): Flow cytometry and cytology reveal rampant aneuploidy. The Plant Genome. https://doi.org/10.3835/plantgenome2010.04.0010

    Article  Google Scholar 

  38. Jowkar, A., Kermani, M. J., Kafi, M., Mardi, M., Hoseini, Z. S., & Koobaz, P. (2009). Cytogenetic and flow cytometry analysis of Iranian Rosa spp. Floriculture Ornamental Biotechnology, 3(1), 71–74.

    Google Scholar 

  39. Ghanbari, M. A., Jowkar, A., Salehi, H., & Zarei, M. (2019). Effects of polyploidization on petal characteristics and optical properties of Impatiens walleriana (Hook). Plant Cell, Tissue and Organ Culture, 138(2), 299–310. https://doi.org/10.1007/s11240-019-01625-3

    Article  CAS  Google Scholar 

  40. Aubry, C. A., Shoal, R. Z., & Erickson, V. (2005). Grass cultivars: Their origins, development, and use on national forests and grasslands of the Pacific Northwest. US Forest Service, Pacific Northwest Region.

    Google Scholar 

  41. Qiu, Y., Hamernick, S., Ortiz, J. B., & Watkins, E. (2020). DNA content and ploidy estimation of Festuca ovina accessions by flow cytometry. Crop Science, 60(5), 2757–2767. https://doi.org/10.1002/csc2.20229

    Article  CAS  Google Scholar 

  42. Gonçalves, T. M., Vigna, B. B. Z., Azevedo, A. L. S., Ferreira, J. R. G., Pozzobon, M. T., & Fávero, A. P. (2021). Reproductive mode and DNA content of Paspalum accessions from Plicatula group: Reproduction and DNA content of Paspalum. Flora, 279(7), 151810. https://doi.org/10.1016/j.flora.2021.151810

    Article  Google Scholar 

  43. Chaves, A. L. A., Carvalho, P. H. M., Ferreira, M. T. M., Benites, F. R. G., & Techio, V. H. (2021). Genomic constitution, allopolyploidy, and evolutionary proposal for Cynodon Rich. based on GISH. Protoplasma, 259, 1–13. https://doi.org/10.1007/s00709-021-01716-z

    Article  CAS  Google Scholar 

  44. Dennhardt, L. A., DeKeyser, E. S., Tennefos, S. A., & Travers, S. E. (2016). There is no evidence of geographical patterning among invasive Kentucky bluegrass (Poa pratensis) populations in the northern great plains. Weed Science, 64(3), 409–420. https://doi.org/10.1614/WS-D-15-00169.1

    Article  Google Scholar 

  45. Rayburn, A. L., & Auger, J. (1990). Genome size variation in Zea mays ssp mays adapted to different altitudes. Theoretical and Applied Genetics, 79(4), 470–474. https://doi.org/10.1007/BF00226155

    Article  CAS  Google Scholar 

  46. Achigan-Dako, E. G., Fuchs, J., Ahanchede, A., & Blattner, F. R. (2008). Flow cytometric analysis in Lagenaria siceraria (Cucurbitaceae) indicates correlation of genome size with usage types and growing elevation. Plant Systematics and Evolution, 276(1), 9–19. https://doi.org/10.1007/s00606-008-0075-2

    Article  CAS  Google Scholar 

  47. Becher, H., Powell, R. F., Brown, M. R., Metherell, C., Pellicer, J., Leitch, I. J., & Twyford, A. D. (2021). The nature of intraspecific and interspecific genome size variation in taxonomically complex eyebrights. Annals of Botany, 128(5), 639–651. https://doi.org/10.1093/aob/mcab102

    Article  CAS  Google Scholar 

  48. de Campos, J. M. S., Sousa, S. M., Silva, P. S., Pinheiro, L. C., Sampaio, F., & Viccini, L. F. (2011). Chromosome numbers and DNA C values in the genus Lippia (Verbenaceae). Plant Systematics and Evolution, 291(1), 133–140. https://doi.org/10.1007/s00606-010-0370-6

    Article  Google Scholar 

  49. Bonos, S. A., Plumley, K. A., & Meyer, W. A. (2002). Ploidy determination in Agrostis using flow cytometry and morphological traits. Crop Science, 42(1), 192–196. https://doi.org/10.2135/cropsci2002.1920

    Article  Google Scholar 

  50. Wang, Y., Bigelow, C. A., & Jiang, Y. (2009). Ploidy level and DNA content of perennial ryegrass germplasm as determined by flow cytometry. HortScience, 44(7), 2049–2052. https://doi.org/10.21273/HORTSCI.44.7.2049

    Article  Google Scholar 

  51. Yan, J., Zhang, J., Sun, K., Chang, D., Bai, S., Shen, Y., Huang, L., Zhang, J., Zhang, Y., & Dong, Y. (2016). Ploidy level and DNA content of Erianthus arundinaceus as determined by flow cytometry and the association with biological characteristics. PLoS ONE, 11(3), e0151948. https://doi.org/10.1371/journal.pone.0151948

    Article  CAS  Google Scholar 

  52. Clayton, W., Vorontsova, M., Harman, K., & Williamson, H. (2016). GrassBase-the online world grass flora. GrassBase-The Online World Grass Flora. Retrieved from http://www.kew.org/data/grasses-db.html.

  53. Gallaher, T. J., Adams, D. C., Attigala, L., Burke, S. V., Craine, J. M., Duvall, M. R., Klahs, P. C., Sherratt, E., Wysocki, W. P., & Clark, L. G. (2019). Leaf shape and size track habitat transitions across forest–grassland boundaries in the grass family (Poaceae). Evolution, 73(5), 927–946. https://doi.org/10.1111/evo.13722

    Article  Google Scholar 

  54. D’Ario, M., Tavares, R., Schiessl, K., Desvoyes, B., Gutierrez, C., Howard, M., & Sablowski, R. (2021). Cell size controlled in plants using DNA content as an internal scale. Science, 372(6547), 1176–1181. https://doi.org/10.1126/science.abb4348

    Article  CAS  Google Scholar 

Download references

Funding

This work received support from Shiraz University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Salehi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanbari, M.A., Salehi, H. & Jowkar, A. Genetic Diversity Assessment of Iranian Kentucky Bluegrass Accessions: II. Nuclear DNA Content and Its Association with Morphological and Geographical Features. Mol Biotechnol 65, 84–96 (2023). https://doi.org/10.1007/s12033-022-00534-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00534-9

Keywords

Navigation