Skip to main content

Advertisement

Log in

CRISPR-Cas9-Mediated NPC1 Gene Deletion Enhances HEK 293 T Cell Adhesion by Regulating E-Cadherin

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

NPC1 gene encodes a transmembrane glycoprotein on the late endosome/lysosomal membrane. Its mutation leads to a rare and aggravated autosomal recessive neurovisceral condition, termed Niemann-Pick disease type C1 (NPC1), which is characterized by progressive neurodegeneration, visceral symptoms, and premature death. To investigate the influence of NPC1 gene deletion on cell morphology, adhesion, proliferation, and apoptosis, CRISPR-Cas9 technology was used to knockout the NPC1 gene in HEK 293 T cells. Sanger sequencing, western blotting, and immunofluorescence were used to confirm successful NPC1 ablation. Filipin staining results indicated that deletion of NPC1 gene led to accumulation of unesterified cholesterol in HEK 293 T cells. Phalloidin staining results revealed cell aggregation, synapse shortening, nuclear enlargement, and cytoskeleton filamentous actin thinning in HEK 293 T cells with NPC1 gene mutation. Furthermore, NPC1 gene mutated HEK 293 T cell showed enhanced cell adhesion, inhibited cell proliferation, and increased cell apoptosis. In addition, NPC1 gene mutations significantly increased the protein expression levels of E-cadherin and γ-catenin and significantly decreased the protein expression levels of Wnt 3a, c-Myc, and cyclin D1. These results suggest that NPC1 may regulate cell adhesion by affecting the cadherin–catenin complex through E-cadherin, and that the classical Wnt signaling pathway may be inhibited by restricting β-catenin from entering the nucleus to inhibit cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Patterson, M. (1993). Niemann-Pick Disease Type C, in GeneReviews(R). University of Washington.

    Google Scholar 

  2. Loftus, S. K., Morris, J. A., Carstea, E. D., Gu, J. Z., Cummings, C., Brown, A., Ellison, J., Ohno, K., Rosenfeld, M. A., Tagle, D. A., Pentchev, P. G., & Pavan, W. J. (1997). Murine model of Niemann-Pick C disease: Mutation in a cholesterol homeostasis gene. Science, 277(5323), 232–235.

    Article  CAS  Google Scholar 

  3. Blanchette-Mackie, E. J. (2000). Intracellular cholesterol trafficking: Role of the NPC1 protein. Biochimica et Biophysica Acta, 1486(1), 171–183.

    Article  CAS  Google Scholar 

  4. Naureckiene, S., Sleat, D. E., Lackland, H., Fensom, A., Vanier, M. T., Wattiaux, R., Jadot, M., & Lobel, P. (2000). Identification of HE1 as the second gene of Niemann-Pick C disease. Science, 290(5500), 2298–2301.

    Article  CAS  Google Scholar 

  5. Scott, C., & Ioannou, Y. A. (2004). The NPC1 protein: Structure implies function. Biochimica et Biophysica Acta, 1685(1–3), 8–13.

    Article  CAS  Google Scholar 

  6. Vanier, M. T. (2010). Niemann-Pick disease type C. Orphanet Journal of Rare Diseases, 5, 16.

    Article  Google Scholar 

  7. Ma, W., Xu, J., Wang, Q., Xin, Y., Zhang, L., Zheng, X., Wang, H., Sun, K., Hui, R., & Huang, X. (2010). Interaction of functional NPC1 gene polymorphism with smoking on coronary heart disease. BMC Medical Genetics, 11, 149.

    Article  Google Scholar 

  8. Higaki, K., Ninomiya, H., Sugimoto, Y., Suzuki, T., Taniguchi, M., Niwa, H., Pentchev, P. G., Vanier, M. T., & Ohno, K. (2001). Isolation of NPC1-deficient Chinese hamster ovary cell mutants by gene trap mutagenesis. Journal of Biochemistry, 129(6), 875–880.

    Article  CAS  Google Scholar 

  9. Rodriguez-Pascau, L., Coll, M. J., Casas, J., Vilageliu, L., & Grinberg, D. (2012). Generation of a human neuronal stable cell model for niemann-pick C disease by RNA interference. JIMD Rep, 4, 29–37.

    Article  Google Scholar 

  10. Liu, R., Liang, L., Freed, E. F., & Gill, R. T. (2021). Directed evolution of CRISPR/Cas systems for precise gene editing. Trends in Biotechnology, 39(3), 262–273.

    Article  CAS  Google Scholar 

  11. Wiedenheft, B., Sternberg, S. H., & Doudna, J. A. (2012). RNA-guided genetic silencing systems in bacteria and archaea. Nature, 482(7385), 331–338.

    Article  CAS  Google Scholar 

  12. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821.

    Article  CAS  Google Scholar 

  13. Zhang, S., Shen, J., Li, D., & Cheng, Y. (2021). Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics, 11(2), 614–648.

    Article  CAS  Google Scholar 

  14. Dalvie, N. C., Lorgeree, T., Biedermann, A. M., Love, K. R., & Love, J. C. (2022). Simplified gene knockout by CRISPR-Cas9-induced homologous recombination. ACS Synthetic Biology, 11(1), 497–501.

    Article  CAS  Google Scholar 

  15. Guan, L., Han, Y., Yang, C., Lu, S., Du, J., Li, H., & Lin, J. (2022). CRISPR-Cas9-mediated gene therapy in neurological disorders. Molecular Neurobiology, 59(2), 968–982.

    Article  CAS  Google Scholar 

  16. Li, Y., Glass, Z., Huang, M., Chen, Z. Y., & Xu, Q. (2020). Ex vivo cell-based CRISPR/Cas9 genome editing for therapeutic applications. Biomaterials, 234, 119711.

    Article  CAS  Google Scholar 

  17. Li, C., Brant, E., Budak, H., & Zhang, B. (2021). CRISPR/Cas: A Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement. Journal of Zhejiang University. Science. B, 22(4), 253–284.

    Article  CAS  Google Scholar 

  18. Rasul, M. F., Hussen, B. M., Salihi, A., Ismael, B. S., Jalal, P. J., Zanichelli, A., Jamali, E., Baniahmad, A., Ghafouri-Fard, S., Basiri, A., & Taheri, M. (2022). Strategies to overcome the main challenges of the use of CRISPR/Cas9 as a replacement for cancer therapy. Molecular Cancer, 21(1), 64.

    Article  Google Scholar 

  19. Du, X., Lukmantara, I., & Yang, H. (2017). CRISPR/Cas9-mediated generation of Niemann-Pick C1 knockout cell line. Methods in Molecular Biology, 1583, 73–83.

    Article  CAS  Google Scholar 

  20. Giuliano, C. J., Lin, A., Girish, V., & Sheltzer, J. M. (2019). Generating single cell-derived knockout clones in mammalian cells with CRISPR/Cas9. Current Protocols in Molecular Biology, 128(1), e100.

    Article  Google Scholar 

  21. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4), 402–408.

    Article  CAS  Google Scholar 

  22. Guan, L., Chi, W., Xiao, W., Chen, L., & He, S. (2014). Analysis of hypoxia-inducible factor alpha polyploidization reveals adaptation to Tibetan Plateau in the evolution of schizothoracine fish. BMC Evolutionary Biology, 14, 192.

    Article  Google Scholar 

  23. Wang, J., Liu, X., Qiu, Y., Shi, Y., Cai, J., Wang, B., Wei, X., Ke, Q., Sui, X., Wang, Y., Huang, Y., Li, H., Wang, T., Lin, R., Liu, Q., & Xiang, A. P. (2018). Cell adhesion-mediated mitochondria transfer contributes to mesenchymal stem cell-induced chemoresistance on T cell acute lymphoblastic leukemia cells. Journal of Hematology & Oncology, 11(1), 11.

    Article  Google Scholar 

  24. Zhang, C., Wang, W., Lin, J., Xiao, J., & Tian, Y. (2019). lncRNA CCAT1 promotes bladder cancer cell proliferation, migration and invasion. International Brazilian Journal of Urology, 45(3), 549–559.

    Article  Google Scholar 

  25. Bazzoni, G., & Dejana, E. (2004). Endothelial cell-to-cell junctions: Molecular organization and role in vascular homeostasis. Physiological Reviews, 84(3), 869–901.

    Article  CAS  Google Scholar 

  26. Garcia, M. A., Nelson, W. J., & Chavez, N. (2018). Cell–cell junctions organize structural and signaling networks. Cold Spring Harbor Perspectives in Biology, 10(4), a029181.

    Article  Google Scholar 

  27. Campbell, H. K., Maiers, J. L., & DeMali, K. A. (2017). Interplay between tight junctions & adherens junctions. Experimental Cell Research, 358(1), 39–44.

    Article  CAS  Google Scholar 

  28. Marie, P. J., Hay, E., Modrowski, D., Revollo, L., Mbalaviele, G., & Civitelli, R. (2014). Cadherin-mediated cell–cell adhesion and signaling in the skeleton. Calcified Tissue International, 94(1), 46–54.

    Article  CAS  Google Scholar 

  29. van Roy, F., & Berx, G. (2008). The cell-cell adhesion molecule E-cadherin. Cellular and Molecular Life Sciences, 65(23), 3756–3788.

    Article  CAS  Google Scholar 

  30. Kaszak, I., Witkowska-Pilaszewicz, O., Niewiadomska, Z., Dworecka-Kaszak, B., Ngosa Toka, F., & Jurka, P. (2020). Role of cadherins in cancer—A review. International Journal of Molecular Sciences, 21(20), 7624.

    Article  CAS  Google Scholar 

  31. Hiroki, O. (2012). Evolution of the cadherin–catenin complex. SubCellular Biochemistry, 60, 9–35.

    Article  Google Scholar 

  32. MacDonald, B. T., Tamai, K., & He, X. (2009). Wnt/beta-catenin signaling: Components, mechanisms, and diseases. Developmental Cell, 17(1), 9–26.

    Article  CAS  Google Scholar 

  33. Zhang, Y., & Wang, X. (2020). Targeting the Wnt/beta-catenin signaling pathway in cancer. Journal of Hematology & Oncology, 13(1), 165.

    Article  Google Scholar 

  34. Efthymiou, A. G., Steiner, J., Pavan, W. J., Wincovitch, S., Larson, D. M., Porter, F. D., Rao, M. S., & Malik, N. (2015). Rescue of an in vitro neuron phenotype identified in Niemann-Pick disease, type C1 induced pluripotent stem cell-derived neurons by modulating the WNT pathway and calcium signaling. Stem Cells Translational Medicine, 4(3), 230–238.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (Grant Nos. 81801127, 81771226, 81800792, and U1804186), Science and Technology Innovative Research Team in Higher Educational Institutions of Henan Province (Grant No. 19IRTSTHN003), Henan Province Science and Technology Project (Grant No. 212102310215), Natural Science Foundation of Henan Province (Grant No. 212300410225), Foundation for the University Key Teacher by the Henan Province (Grant No. 2020GGJS148), Major Cultivation Plan of Scientific and Technological Achievements from Natural science class of Xinxiang Medical University (Grant No. 20172DCG-03), Doctoral Scientific Research Program Foundation of Xinxiang Medical University (Grant No. XYBSKYZZ201523), and Open Program of Henan Key Lab of Biological Psychiatry (Grant No. ZDSYS2015004), Preferential Scientific Research Foundation for Overseas Scholars of Henan Province (Grant No. 40), Research Innovation Support Program for Postgraduates of Xinxiang Medical University (Grant No. YJSCX202135Y).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by ZJ, MY and YZ. The first draft of the manuscript was written by ZJ and LG, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Juntang Lin or Lihong Guan.

Ethics declarations

Conflict of interest

All authors declare no financial or commercial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Z., Yang, M., Zhao, Y. et al. CRISPR-Cas9-Mediated NPC1 Gene Deletion Enhances HEK 293 T Cell Adhesion by Regulating E-Cadherin. Mol Biotechnol 65, 252–262 (2023). https://doi.org/10.1007/s12033-022-00503-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00503-2

Keywords

Navigation