Skip to main content
Log in

CD36 Ectodomain Detects Apoptosis in Mammalian Cells

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The cells that undergo apoptosis show phosphatidylserine (PS) on the cell membrane. The fluorescently labeled hCD36_ecto is staining and detecting apoptotic cells in a flow-based assay with several advantages over Annexin V. The human CD36 ectodomain (hCD36_ecto) is stable for a range of temperatures and experimental conditions and doesn’t require Ca2+ for detecting apoptosis and specific towards PS compared to other lipids. The blocking with unlabeled hCD36_ecto reduces the staining of Annexin V-FITC for apoptotic cells, whereas R63A does not affect the binding of Annexin V- FITC to apoptotic cells. It indicates the role of CD36-PS interaction in detecting apoptotic cells. Dual-staining with hCD36_ecto-FITC/PI is universally detecting apoptosis in different nucleated cells or eryptosis in non-nucleated RBCs. Hence, our study highlights the utility of CD36 as a probe to detect apoptosis in mammalian cells. It might be a robust, economical reagent for the scientific community to facilitate their research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gavrilescu, L. C., & Denkers, E. Y. (2003). Apoptosis and the balance of homeostatic and pathologic responses to protozoan infection. Infection and Immunity, 71, 6109–6115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Elmore, S. (2007). Apoptosis: A review of programmed cell death. Toxicologic Pathology, 35, 495–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rysavy, N. M., Shimoda, L. M., Dixon, A. M., Speck, M., Stokes, A. J., Turner, H., & Umemoto, E. Y. (2014). Beyond apoptosis: The mechanism and function of phosphatidylserine asymmetry in the membrane of activating mast cells. BioArchitecture, 4, 127–137.

    PubMed  Google Scholar 

  4. Kuhtreiber, W., Hayashi, T., Dale, E., & Faustman, D. (2003). Central role of defective apoptosis in autoimmunity. Journal of Molecular Endocrinology, 31, 373–399.

    Article  CAS  PubMed  Google Scholar 

  5. Mahajan, A., Herrmann, M., & Muñoz, L. E. (2016). Clearance deficiency and cell death pathways: A model for the pathogenesis of SLE. Frontiers in Immunology, 7, 35.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Penberthy, K. K., & Ravichandran, K. S. (2016). Apoptotic cell recognition receptors and scavenger receptors. Immunological Reviews, 269, 44–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Das, S., Owen, K. A., Ly, K. T., Park, D., Black, S. G., Wilson, J. M., Sifri, C. D., Ravichandran, K. S., Ernst, P. B., & Casanova, J. E. (2011). Brain angiogenesis inhibitor 1 (BAI1) is a pattern recognition receptor that mediates macrophage binding and engulfment of Gram-negative bacteria. Proceedings of the National Academy of Sciences, 108, 2136–2141.

    Article  CAS  Google Scholar 

  8. Ichimura, T., Asseldonk, E. J., Humphreys, B. D., Gunaratnam, L., Duffield, J. S., & Bonventre, J. V. (2008). Kidney injury molecule–1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. The Journal of clinical investigation, 118, 1657–1668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Flannagan, R. S., Canton, J., Furuya, W., Glogauer, M., & Grinstein, S. (2014). The phosphatidylserine receptor TIM4 utilizes integrins as coreceptors to effect phagocytosis. Molecular Biology of the Cell, 25, 1511–1522.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wu, Y., Singh, S., Georgescu, M.-M., & Birge, R. B. (2005). A role for Mer tyrosine kinase in αvβ5 integrin-mediated phagocytosis of apoptotic cells. Journal of Cell Science, 118, 539–553.

    Article  CAS  PubMed  Google Scholar 

  11. Tamura, Y., Adachi, H., Osuga, J.-I., Ohashi, K., Yahagi, N., Sekiya, M., Okazaki, H., Tomita, S., Iizuka, Y., & Shimano, H. (2003). FEEL-1 and FEEL-2 are endocytic receptors for advanced glycation end products. Journal of Biological Chemistry, 278, 12613–12617.

    Article  CAS  PubMed  Google Scholar 

  12. Hanayama, R., Tanaka, M., Miwa, K., Shinohara, A., Iwamatsu, A., & Nagata, S. (2002). Identification of a factor that links apoptotic cells to phagocytes. Nature, 417, 182.

    Article  CAS  PubMed  Google Scholar 

  13. Berwin, B., Delneste, Y., Lovingood, R. V., Post, S. R., & Pizzo, S. V. (2004). SREC-I, a type F scavenger receptor, is an endocytic receptor for calreticulin. Journal of Biological Chemistry, 279, 51250–51257.

    Article  CAS  PubMed  Google Scholar 

  14. Su, H. P., Nakada-Tsukui, K., Tosello-Trampont, A.-C., Li, Y., Bu, G., Henson, P. M., & Ravichandran, K. S. (2002). Interaction of CED-6/GULP, an adapter protein involved in engulfment of apoptotic cells with CED-1 and CD91/low density lipoprotein receptor-related protein (LRP). Journal of Biological Chemistry, 277, 11772–11779.

    Article  CAS  PubMed  Google Scholar 

  15. Fadok, V. A., Warner, M. L., Bratton, D. L., & Henson, P. M. (1998). CD36 is required for phagocytosis of apoptotic cells by human macrophages that use either a phosphatidylserine receptor or the vitronectin receptor (αvβ3). The Journal of Immunology, 161, 6250–6257.

    Article  CAS  PubMed  Google Scholar 

  16. Greenberg, M. E., Sun, M., Zhang, R., Febbraio, M., Silverstein, R., & Hazen, S. L. (2006). Oxidized phosphatidylserine–CD36 interactions play an essential role in macrophage-dependent phagocytosis of apoptotic cells. Journal of Experimental Medicine, 203, 2613–2625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hotchkiss, R. S., Swanson, P. E., Freeman, B. D., Tinsley, K. W., Cobb, J. P., Matuschak, G. M., Buchman, T. G., & Karl, I. E. (1999). Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Critical Care Medicine, 27, 1230–1251.

    Article  CAS  PubMed  Google Scholar 

  18. Blankenberg, F. G. (2008). In vivo detection of apoptosis. The Journal of Nuclear Medicine, 49, 81S.

    Article  CAS  PubMed  Google Scholar 

  19. Archana, M., Yogesh, T., & Kumaraswamy, K. (2013). Various methods available for detection of apoptotic cells-A review. Indian Journal of Cancer, 50, 274.

    Article  CAS  PubMed  Google Scholar 

  20. Martinez, M. M., Reif, R. D., & Pappas, D. (2010). Detection of apoptosis: A review of conventional and novel techniques. Analytical Methods, 2, 996–1004.

    Article  CAS  Google Scholar 

  21. Tait, J. F., & Smith, C. (1999). Phosphatidylserine receptors: Role of CD36 in binding of anionic phospholipid vesicles to monocytic cells. Journal of Biological Chemistry, 274, 3048–3054.

    Article  CAS  PubMed  Google Scholar 

  22. Banesh, S., Ramakrishnan, V., & Trivedi, V. (2018). Mapping of phosphatidylserine recognition region on CD36 ectodomain. Archives of Biochemistry and Biophysics, 660, 1–10.

    Article  CAS  PubMed  Google Scholar 

  23. Deshmukh, R., & Trivedi, V. (2014). Phagocytic uptake of oxidized heme polymer is highly cytotoxic to macrophages. PLoS ONE, 9, e103706.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Deka, S. J., Mamdi, N., Manna, D., & Trivedi, V. (2016). Alkyl cinnamates induce protein kinase C translocation and anticancer activity against breast cancer cells through induction of the mitochondrial pathway of apoptosis. Journal of Breast Cancer, 19, 358–371.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Abed, M., Herrmann, T., Alzoubi, K., Pakladok, T., & Lang, F. (2013). Tannic acid induced suicidal erythrocyte death. Cellular Physiology and Biochemistry, 32, 1106–1116.

    Article  CAS  PubMed  Google Scholar 

  26. Kim, J.-H., Lee, D.-K., Kim, J., Choi, S., Park, W., Ha, K.-S., Kim, T.-H., Choe, J., Won, M.-H., & Kwon, Y.-G. (2017). A miRNA-101–3p/Bim axis as a determinant of serum deprivation-induced endothelial cell apoptosis. Cell Death & Disease, 8, e2808.

    Article  CAS  Google Scholar 

  27. Kim, J.-H., Lee, D.-K., Kim, J., Choi, S., Park, W., Ha, K.-S., Kim, T.-H., Choe, J., Won, M.-H., & Kwon, Y.-G. (2017). A miRNA-101-3p/Bim axis as a determinant of serum deprivation-induced endothelial cell apoptosis. Cell Death & Disease, 8, e2808–e2808.

    Article  CAS  Google Scholar 

  28. Fadok, V. A., Bratton, D. L., Frasch, S. C., Warner, M. L., & Henson, P. M. (1998). The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death and Differentiation, 5, 551.

    Article  CAS  PubMed  Google Scholar 

  29. Vermes, I., Haanen, C., Steffens-Nakken, H., & Reutellingsperger, C. (1995). A novel assay for apoptosis flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled annexin V. Journal of Immunological Methods, 184, 39–51.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, G., Gurtu, V., Kain, S. R., & Yan, G. (1997). Early detection of apoptosis using a fluorescent conjugate of annexin V. BioTechniques, 23, 525–531.

    Article  CAS  PubMed  Google Scholar 

  31. Gupta, S., Elias, M., Wen, X., Shapiro, J., Brillson, L., Lu, W., & Lee, S. C. (2008). Detection of clinically relevant levels of protein analyte under physiologic buffer using planar field effect transistors. Biosensors and Bioelectronics, 24, 505–511.

    Article  CAS  PubMed  Google Scholar 

  32. Wlodkowic, D., Skommer, J., & Darzynkiewicz, Z. (2009). Flow cytometry-based apoptosis detection. In P. Erhardt & A. Toth (Eds.), Apoptosis (pp. 19–32). Springer.

  33. Schutte, B., Nuydens, R., Geerts, H., & Ramaekers, F. (1998). Annexin V binding assay as a tool to measure apoptosis in differentiated neuronal cells. Journal of Neuroscience Methods, 86, 63–69.

    Article  CAS  PubMed  Google Scholar 

  34. Sordet, O., Khan, Q. A., Plo, I., Pourquier, P., Urasaki, Y., Yoshida, A., Antony, S., Kohlhagen, G., Solary, E., & Saparbaev, M. (2004). Apoptotic topoisomerase I-DNA complexes induced by staurosporine-mediated oxygen radicals. Journal of Biological Chemistry, 279, 50499–50504.

    Article  CAS  PubMed  Google Scholar 

  35. Nagata, E., Luo, H. R., Saiardi, A., Bae, B.-I., Suzuki, N., & Snyder, S. H. (2005). Inositol hexakisphosphate kinase-2, a physiologic mediator of cell death. Journal of Biological Chemistry, 280, 1634–1640.

    Article  CAS  PubMed  Google Scholar 

  36. Qiao, L., Koutsos, M., Tsai, L.-L., Kozoni, V., Guzman, J., Shiff, S. J., & Rigas, B. (1996). Staurosporine inhibits the proliferation, alters the cell cycle distribution and induces apoptosis in HT-29 human colon adenocarcinoma cells. Cancer Letters, 107, 83–89.

    Article  CAS  PubMed  Google Scholar 

  37. Kleinert, H., Euchenhofer, C., Fritz, G., Ihrig-Biedert, I., & Förstermann, U. (1998). Involvement of protein kinases in the induction of NO synthase II in human DLD-1 cells. British journal of pharmacology, 123, 1716–1722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lorenz, H., Herrmann, M., Winkler, T., Gaipl, U., & Kalden, J. (2000). Role of apoptosis in autoimmunity. Apoptosis, 5, 443–449.

    Article  CAS  PubMed  Google Scholar 

  39. Mahoney, J. A., & Rosen, A. (2005). Apoptosis and autoimmunity. Current Opinion in Immunology, 17, 583–588.

    Article  CAS  PubMed  Google Scholar 

  40. Grasl-Kraupp, B., Ruttkay-Nedecky, B., Koudelka, H., Bukowska, K., Bursch, W., & Schulte-Hermann, R. (1995). In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: A cautionary note. Hepatology, 21, 1465–1468.

    CAS  PubMed  Google Scholar 

  41. Eleftheriadis, T., Pissas, G., Liakopoulos, V., & Stefanidis, I. (2016). Cytochrome c as a potentially clinical useful marker of mitochondrial and cellular damage. Frontiers in Immunology, 7, 279.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Sivandzade, F., Bhalerao, A., & Cucullo, L. (2019). Analysis of the mitochondrial membrane potential using the cationic JC-1 dye as a sensitive fluorescent probe. Bio-protocol. https://doi.org/10.21769/BioProtoc.3128

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kylarová, D., Procházková, J., Mad’arová, J., Bartoš, J., & Lichnovský, V. (2002). Comparison of the TUNEL, lamin B and annexin V methods for the detection of apoptosis by flow cytometry. Acta Histochemica, 104, 367–370.

    Article  PubMed  Google Scholar 

  44. Banfalvi, G. (2017). Methods to detect apoptotic cell death. Apoptosis, 22, 306–323.

    Article  CAS  PubMed  Google Scholar 

  45. Poghosyan, G., Melkonyan, V., Mikaelyan, M., & Gasparyan, V. (2003). A simplified method for purification of annexin V from human placenta. Preparative Biochemistry and Biotechnology, 33, 209–215.

    Article  CAS  PubMed  Google Scholar 

  46. Marder, L. S., Lunardi, J., Renard, G., Rostirolla, D. C., Petersen, G. O., Nunes, J. E., & Bizarro, C. V. (2014). Production of recombinant human annexin V by fed-batch cultivation. BMC Biotechnology, 14, 33.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Chan, L.L.-Y., Smith, T., Kumph, K. A., Kuksin, D., Kessel, S., Déry, O., Cribbes, S., Lai, N., & Qiu, J. (2016). A high-throughput AO/PI-based cell concentration and viability detection method using the Celigo image cytometry. Cytotechnology, 68, 2015–2025.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chan, L. L., Wilkinson, A. R., Paradis, B. D., & Lai, N. (2012). Rapid image-based cytometry for comparison of fluorescent viability staining methods. Journal of Fluorescence, 22, 1301–1311.

    Article  CAS  PubMed  Google Scholar 

  49. Banesh, S., & Trivedi, V. (2020). Therapeutic potentials of scavenger receptor cd36 mediated innate immune responses against infectious and non-infectious diseases. Current Drug Discovery Technologies, 17, 299–317.

    Article  CAS  PubMed  Google Scholar 

  50. Kapty, J., Banman, S., Goping, I. S., & Mercer, J. R. (2012). Evaluation of phosphatidylserine-binding peptides targeting apoptotic cells. Journal of Biomolecular Screening, 17, 1293–1301.

    Article  CAS  PubMed  Google Scholar 

  51. Igarashi, K., Kaneda, M., Yamaji, A., Saido, T. C., Kikkawa, U., Ono, Y., Inoue, K., & Umeda, M. (1995). A novel phosphatidylserine-binding peptide motif defined by an anti-idiotypic monoclonal antibody: Localization of phosphatidylserine-specific binding sites on protein kinase C and phosphatidylserine decarboxylase. Journal of Biological Chemistry, 270, 29075–29078.

    Article  CAS  PubMed  Google Scholar 

  52. Caberoy, N. B., Zhou, Y., Alvarado, G., Fan, X., & Li, W. (2009). Efficient identification of phosphatidylserine-binding proteins by ORF phage display. Biochemical and Biophysical Research Communications, 386, 197–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wuest, M., Perreault, A., Kapty, J., Richter, S., Foerster, C., Bergman, C., Way, J., Mercer, J., & Wuest, F. (2015). Radiopharmacological evaluation of 18F-labeled phosphatidylserine-binding peptides for molecular imaging of apoptosis. Nuclear Medicine and Biology, 42, 864–874.

    Article  CAS  PubMed  Google Scholar 

  54. Azzouna, R. B., Guez, A., Benali, K., Al-Shoukr, F., Gonzalez, W., Karoyan, P., Rouzet, F., & Le Guludec, D. (2017). Synthesis, gallium labelling and characterization of P04087, a functionalized phosphatidylserine-binding peptide. EJNMMI Radiopharmacy and Chemistry, 2, 1–17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Trivedi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banesh, S., Trivedi, V. CD36 Ectodomain Detects Apoptosis in Mammalian Cells. Mol Biotechnol 63, 992–1003 (2021). https://doi.org/10.1007/s12033-021-00356-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00356-1

Keywords

Navigation