Skip to main content
Log in

Cook Your Samples: The Application of Microwave Irradiation in Speeding Up Biological Processes

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Classic and conventional procedures in molecular cloning are inherent compositions in modern molecular biological experiments and are frequently involved in daily laboratory activities. They take up the majority of the total time input in spite of the availability of well-designed specialized commercial kits. A similar situation is also in the field of biotechnology. Fortunately, microwave/ultrasonic irradiation has been found to be capable of speeding up these processes, such as proteolysis in sample preparation for proteomics research, and digestion, ligation, (de)phosphorylation of DNA with the corresponding enzymes, even the introduction of DNA samples to recipient cells, and biotransformation (e.g., the production of biodiesel). Microwave/ultrasonic irradiation, when used solely or in combination with other existing operations, makes it possible to finish these time-consuming processes in as short as 1 min with comparable or even improved efficiency, and there is no need of reagent upgradation. The adoption of irradiation is ideal because it eliminates any possible side effects of the chemicals used as performance enhancer(s) that will inevitably make the system more complicated at least. More notably, the needed irradiation in the laboratory can be generated by a common microwave oven or ultrasonic cleaner. Taken together, microwave/ultrasonic irradiation provides an accessible method to make the procedures mentioned above time- and cost- efficient. In this article, we reviewed the relevant literature and discussed the experiment and mechanism details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Adapted with permission from (Young et al. [40]). Copyright (2008) American Chemical Society

Similar content being viewed by others

References

  1. Cohen, S. N., Chang, A. C., Boyer, H. W., & Helling, R. B. (1973). Construction of biologically functional bacterial plasmids in vitro. Proceedings of the National Academy of Sciences of the United States of America, 70(11), 3240–3244.

    Article  CAS  Google Scholar 

  2. Li, M. Z., & Elledge, S. J. (2007). Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nature Methods, 4(3), 251–256. https://doi.org/10.1038/nmeth1010.

    Article  CAS  Google Scholar 

  3. Hayashi, K., Nakazawa, M., Ishizaki, Y., Hiraoka, N., & Obayashi, A. (1986). Regulation of inter- and intramolecular ligation with T4 DNA ligase in the presence of polyethylene glycol. Nucleic Acids Research, 14(19), 7617–7631.

    Article  CAS  Google Scholar 

  4. Hayashi, K., Nakazawa, M., Ishizaki, Y., Hiraoka, N., & Obayashi, A. (1985). Stimulation of intermolecular ligation with E. coli DNA ligase by high concentrations of monovalent cations in polyethylene glycol solutions. Nucleic Acids Research, 13(22), 7979–7992.

    Article  CAS  Google Scholar 

  5. Kappe, C. O. (2013). Unraveling the mysteries of microwave chemistry using silicon carbide reactor technology. Accounts of Chemical Research, 46(7), 1579–1587. https://doi.org/10.1021/ar300318c.

    Article  CAS  Google Scholar 

  6. Kappe, C. O. (2004). Controlled microwave heating in modern organic synthesis. Angewandte Chemie, 43(46), 6250–6284. https://doi.org/10.1002/anie.200400655. (international ed. in English).

    Article  CAS  Google Scholar 

  7. Jhingan, A. K. (1992). Microwave restriction enzyme digestion of DNA, 3, 15–22.

    CAS  Google Scholar 

  8. Jhingan, A. K. (1994, September 27). Microwave acceleration of enzyme-catalyzed modification of macromolecules. Retrieved from http://www.google.com/patents/US5350686.

  9. Das, R. H., Ahirwar, R., Kumar, S., & Nahar, P. (2015). Microwave-mediated enzymatic modifications of DNA. Analytical Biochemistry, 471, 26–28. https://doi.org/10.1016/j.ab.2014.11.003.

    Article  CAS  Google Scholar 

  10. Cooper, J. B., Halverson, D. L., & Coldren, C. (1993). Ultrasonic ligation for rapid high-efficiency subcloning in plasmid vectors. Nucleic Acids Research, 21(7), 1681.

    Article  CAS  Google Scholar 

  11. Wilson, R. C., Long, F., Maruoka, E. M., & Cooper, J. B. (1994). A new proline-rich early nodulin from Medicago truncatula is highly expressed in nodule meristematic cells. The Plant Cell, 6(9), 1265–1275. https://doi.org/10.1105/tpc.6.9.1265.

    Article  CAS  Google Scholar 

  12. Song, Y., Hahn, T., Thompson, I. P., Mason, T. J., Preston, G. M., Li, G., et al. (2007). Ultrasound-mediated DNA transfer for bacteria. Nucleic Acids Research, 35(19), e129. https://doi.org/10.1093/nar/gkm710.

    Article  Google Scholar 

  13. Fregel, R., Rodríguez, V., & Cabrera, V. M. (2008). Microwave improved Escherichia coli transformation. Letters in Applied Microbiology, 46(4), 498–499. https://doi.org/10.1111/j.1472-765X.2008.02333.x.

    Article  CAS  Google Scholar 

  14. Tripp, V. T., Maza, J. C., & Young, D. D. (2013). Development of rapid microwave-mediated and low-temperature bacterial transformations. Journal of Chemical Biology, 6(3), 135–140. https://doi.org/10.1007/s12154-013-0095-4.

    Article  Google Scholar 

  15. Switzar, L., Giera, M., & Niessen, W. M. A. (2013). Protein digestion: An overview of the available techniques and recent developments. Journal of Proteome Research, 12(3), 1067–1077. https://doi.org/10.1021/pr301201x.

    Article  CAS  Google Scholar 

  16. Larhed, M., Moberg, C., & Hallberg, A. (2002). Microwave-accelerated homogeneous catalysis in organic chemistry. Accounts of Chemical Research, 35(9), 717–727.

    Article  CAS  Google Scholar 

  17. Pramanik, B. N., Mirza, U. A., Ing, Y. H., Liu, Y.-H., Bartner, P. L., Weber, P. C., et al. (2002). Microwave-enhanced enzyme reaction for protein mapping by mass spectrometry: A new approach to protein digestion in minutes. Protein Science: A Publication of the Protein Society, 11(11), 2676–2687. https://doi.org/10.1110/ps.0213702.

    Article  CAS  Google Scholar 

  18. Lill, J. R., Ingle, E. S., Liu, P. S., Pham, V., & Sandoval, W. N. (2007). Microwave-assisted proteomics. Mass Spectrometry Reviews, 26(5), 657–671. https://doi.org/10.1002/mas.20140.

    Article  CAS  Google Scholar 

  19. Sandoval, W. N., Pham, V., Ingle, E. S., Liu, P. S., & Lill, J. R. (2007). Applications of microwave-assisted proteomics in biotechnology. Combinatorial Chemistry & High Throughput Screening, 10(9), 751–765.

    Article  CAS  Google Scholar 

  20. Ramos-Payán, M., Ocaña-González, J. A., Fernández-Torres, R. M., Maspoch, S., & Bello-López, M. Á. (2017). Recent advances in sample pre-treatment for emerging methods in proteomic analysis. Talanta, 174, 738–751. https://doi.org/10.1016/j.talanta.2017.06.056.

    Article  Google Scholar 

  21. López-Ferrer, D., Heibeck, T. H., Petritis, K., Hixson, K. K., Qian, W., Monroe, M. E., et al. (2008). Rapid sample processing for LC-MS-based quantitative proteomics using high intensity focused ultrasound. Journal of Proteome Research, 7(9), 3860–3867. https://doi.org/10.1021/pr800161x.

    Article  Google Scholar 

  22. Domínguez-Vega, E., García, M. C., Crego, A. L., & Marina, M. L. (2010). First approach based on direct ultrasonic assisted enzymatic digestion and capillary-high performance liquid chromatography for the peptide mapping of soybean proteins. Journal of Chromatography A, 1217(42), 6443–6448. https://doi.org/10.1016/j.chroma.2010.08.027.

    Article  Google Scholar 

  23. Rial-Otero, R., Carreira, R. J., Cordeiro, F. M., Moro, A. J., Santos, H. M., Vale, G., et al. (2007). Ultrasonic assisted protein enzymatic digestion for fast protein identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry sonoreactor versus ultrasonic probe. Journal of Chromatography A, 1166(1–2), 101–107. https://doi.org/10.1016/j.chroma.2007.08.013.

    Article  CAS  Google Scholar 

  24. Liu, X., Chan, K., Chu, I. K., & Li, J. (2008). Microwave-assisted nonspecific proteolytic digestion and controlled methylation for glycomics applications. Carbohydrate Research, 343(17), 2870–2877. https://doi.org/10.1016/j.carres.2008.07.010.

    Article  CAS  Google Scholar 

  25. Henze, M., Merker, D., & Elling, L. (2016). Microwave-assisted synthesis of glycoconjugates by transgalactosylation with recombinant thermostable β-glycosidase from Pyrococcus. International Journal of Molecular Sciences, 17(2), 210. https://doi.org/10.3390/ijms17020210.

    Article  Google Scholar 

  26. de Souza, R. O. M. A., Antunes, O. A. C., Kroutil, W., & Kappe, C. O. (2009). Kinetic resolution of rac-1-phenylethanol with immobilized lipases: A critical comparison of microwave and conventional heating protocols. The Journal of Organic Chemistry, 74(16), 6157–6162. https://doi.org/10.1021/jo9010443.

    Article  Google Scholar 

  27. Souza, L. T. A., Mendes, A. A., & de Castro, H. F. (2016). Selection of lipases for the synthesis of biodiesel from jatropha oil and the potential of microwave irradiation to enhance the reaction rate. BioMed Research International, 2016, 1404567. https://doi.org/10.1155/2016/1404567.

    Article  Google Scholar 

  28. Lokman, I. M., Rashid, U., Zainal, Z., Yunus, R., & Taufiq-Yap, Y. H. (2014). Microwave-assisted biodiesel production by esterification of palm fatty acid distillate. Journal of Oleo Science, 63(9), 849–855.

    Article  CAS  Google Scholar 

  29. Wang, L., Zhang, Y., Zhang, Y., Zheng, L., Huang, H., & Wang, Z. (2017). Synthesis of 2-ethylhexyl palmitate catalyzed by enzyme under microwave. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-017-2666-2.

    Google Scholar 

  30. Koberg, M., Cohen, M., Ben-Amotz, A., & Gedanken, A. (2011). Bio-diesel production directly from the microalgae biomass of nannochloropsis by microwave and ultrasound radiation. Bioresource Technology, 102(5), 4265–4269. https://doi.org/10.1016/j.biortech.2010.12.004.

    Article  CAS  Google Scholar 

  31. Wahidin, S., Idris, A., & Shaleh, S. R. M. (2016). Ionic liquid as a promising biobased green solvent in combination with microwave irradiation for direct biodiesel production. Bioresource Technology, 206, 150–154. https://doi.org/10.1016/j.biortech.2016.01.084.

    Article  CAS  Google Scholar 

  32. Savoo, S., & Mudhoo, A. (2018). Biomethanation macrodynamics of vegetable residues pretreated by low-frequency microwave irradiation. Bioresource Technology, 248(Pt A), 280–286. https://doi.org/10.1016/j.biortech.2017.05.200.

    Article  CAS  Google Scholar 

  33. Aylin Alagöz, B., Yenigün, O., & Erdinçler, A. (2018). Ultrasound assisted biogas production from co-digestion of wastewater sludges and agricultural wastes: Comparison with microwave pre-treatment. Ultrasonics Sonochemistry, 40(Pt B), 193–200. https://doi.org/10.1016/j.ultsonch.2017.05.014.

    Article  Google Scholar 

  34. Liao, W., Sharma, V. K., Xu, S., Li, Q., & Wang, L. (2017). Microwave-enhanced photolysis of norfloxacin: Kinetics, matrix effects, and degradation pathways. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph14121564.

    Google Scholar 

  35. Hari Das, R., Ahirwar, R., Kumar, S., & Nahar, P. (2016). Microwave-assisted rapid enzymatic synthesis of nucleic acids. Nucleosides, Nucleotides & Nucleic Acids, 35(7), 363–369. https://doi.org/10.1080/15257770.2016.1163383.

    Article  CAS  Google Scholar 

  36. Sagripanti, J. L., Swicord, M. L., & Davis, C. C. (1987). Microwave effects on plasmid DNA. Radiation Research, 110(2), 219–231.

    Article  CAS  Google Scholar 

  37. Yang, Y., & Hang, J. (2013). Fragmentation of genomic DNA using microwave irradiation. Journal of Biomolecular Techniques: JBT, 24(2), 98–103. https://doi.org/10.7171/jbt.13-2402-005.

    Google Scholar 

  38. Narasimhan, V., & Huh, W. K. (1991). Altered restriction patterns of microwave irradiated lambdaphage DNA. Biochemistry International, 25(2), 363–370.

    CAS  Google Scholar 

  39. Leadbeater, N. E., Stencel, L. M., & Wood, E. C. (2007). Probing the effects of microwave irradiation on enzyme-catalysed organic transformations: The case of lipase-catalysed transesterification reactions. Organic & Biomolecular Chemistry, 5(7), 1052–1055. https://doi.org/10.1039/b617544a.

    Article  CAS  Google Scholar 

  40. Young, D. D., Nichols, J., Kelly, R. M., & Deiters, A. (2008). Microwave activation of enzymatic catalysis. Journal of the American Chemical Society, 130(31), 10048–10049. https://doi.org/10.1021/ja802404g.

    Article  CAS  Google Scholar 

  41. Rejasse, B., Lamare, S., Legoy, M.-D., & Besson, T. (2007). Influence of microwave irradiation on enzymatic properties: Applications in enzyme chemistry. Journal of Enzyme Inhibition and Medicinal Chemistry, 22(5), 518–526.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Nanhu Scholars Program for Young Scholars of XYNU, Startup Program, and Key Program for Natural Science Exploration of XYNU (2017-ZDYY-160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianwen Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, C., Liu, Z., Liu, C. et al. Cook Your Samples: The Application of Microwave Irradiation in Speeding Up Biological Processes. Mol Biotechnol 60, 236–244 (2018). https://doi.org/10.1007/s12033-018-0061-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-018-0061-z

Keywords

Navigation