Skip to main content
Log in

Characterization of Recombinant Thermococcus kodakaraensis (KOD) DNA Polymerases Produced Using Silkworm-Baculovirus Expression Vector System

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The KOD DNA polymerase from Thermococcus kodakarensis (Tkod-Pol) has been preferred for PCR due to its rapid elongation rate, extreme thermostability and outstanding fidelity. Here in this study, we utilized silkworm-baculovirus expression vector system (silkworm-BEVS) to express the recombinant Tkod-Pol (rKOD) with N-terminal (rKOD-N) or C-terminal (rKOD-C) tandem fusion tags. By using BEVS, we produced functional rKODs with satisfactory yields, about 1.1 mg/larva for rKOD-N and 0.25 mg/larva for rKOD-C, respectively. Interestingly, we found that rKOD-C shows higher thermostability at 95 °C than that of rKOD-N, while that rKOD-N is significantly unstable after exposing to long period of heat-shock. We also assessed the polymerase activity as well as the fidelity of purified rKODs under various conditions. Compared with commercially available rKOD, which is expressed in E. coli expression system, rKOD-C exhibited almost the same PCR performance as the commercial rKOD did, while rKOD-N did lower performance. Taken together, our results suggested that silkworm-BEVS can be used to express and purify efficient rKOD in a commercial way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Burgers, P. M., Koonin, E. V., Bruford, E., Blanco, L., Burtis, K. C., Christman, M. F., et al. (2001). Eukaryotic DNA polymerases: Proposal for a revised nomenclature. Journal of Biological Chemistry, 276, 43487–43490.

    Article  CAS  Google Scholar 

  2. Makarova, K. S., & Koonin, E. V. (2013). Archaeology of eukaryotic DNA replication. Cold Spring Harbor Perspectives Biology, 5, a012963.

    Article  Google Scholar 

  3. Krupovic, M., Makarova, K. S., Forterre, P., Prangishvili, D., & Koonin, E. V. (2014). Casposons: A new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity. BMC Biology, 12, 36.

    Article  Google Scholar 

  4. Lundberg, K. S., Shoemaker, D. D., Adams, M. W., Short, J. M., Sorge, J. A., & Mathur, E. J. (1991). High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene, 108, 1–6.

    Article  CAS  Google Scholar 

  5. Cline, J., Braman, J. C., & Hogrefe, H. H. (1996). PCR fidelity of Pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Research, 24, 3546–3551.

    Article  CAS  Google Scholar 

  6. Takagi, M., Nishioka, M., Kakihara, H., Kitabayashi, M., Inoue, H., Kawakami, B., et al. (1997). Characterization of DNA polymerase from Pyrococcus sp. strain KOD1 and its application to PCR. Applied Environmental Microbiology, 63, 4504–4510.

    CAS  Google Scholar 

  7. Lu, C., & Erickson, H. P. (1997). Expression in Escherichia coli of the thermostable DNA polymerase from Pyrococcus furiosus. Protein Expression and Purification, 11, 179–184.

    Article  CAS  Google Scholar 

  8. Sun, Z., & Cai, J. (2006). Purification of recombinant Pfu DNA polymerase using a new JK110 resin. Korean Journal of Chemical Engineering, 23, 607–609.

    Article  Google Scholar 

  9. Niimi, H., Mori, M., Tabata, H., Minami, H., Ueno, T., Hayashi, S., et al. (2011). A novel eukaryote-made thermostable DNA polymerase which is free from bacterial DNA contamination. Journal of Clinical Microbiology, 49, 3316–3320.

    Article  CAS  Google Scholar 

  10. Miladi, B., Dridi, C., El Marjou, A., Boeuf, G., Bouallagui, H., Dufour, F., et al. (2013). An improved strategy for easy process monitoring and advanced purification of recombinant proteins. Molecular Biotechnology, 55, 227–235.

    Article  CAS  Google Scholar 

  11. Hu, J. H., Wang, F., & Liu, C. Z. (2015). Development of an efficient process intensification strategy for enhancing Pfu DNA polymerase production in recombinant Escherichia coli. Bioprocess and Biosystems Engineering, 38, 651–659.

    Article  CAS  Google Scholar 

  12. Ishino, Y., Iwasaki, H., Kato, I., & Shinagawa, H. (1994). Amino-acid-sequence motifs essential to 3′–5′ exonuclease activity of Escherichia coli DNA polymerase II. Journal of Biological Chemistry, 269, 14655–14660.

    CAS  Google Scholar 

  13. Biles, B. D., & Connolly, B. A. (2004). Low-fidelity Pyrococcus furiosus DNA polymerase mutants useful in error-prone PCR. Nucleic Acids Research, 32, e176.

    Article  Google Scholar 

  14. Nørholm, M. H. H. (2010). A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering. BMC Biotechnology, 10, 21.

    Article  Google Scholar 

  15. Yamagami, T., Ishino, S., Kawarabayasi, Y., & Ishino, Y. (2014). Mutant Taq DNA polymerases with improved elongation ability as a useful reagent for genetic engineering. Frontiers in Microbiology, 5, 461.

    Article  Google Scholar 

  16. Ppyun, H., Kim, S. H., Youn, M. H., Cho, S. S., Kwon, K. M., Kweon, D. H., et al. (2016). Improved PCR performance and fidelity of double mutant Neq A523R/N540R DNA polymerase. Enzyme and Microbial Technology, 82, 197–204.

    Article  CAS  Google Scholar 

  17. Elshawadfy, A. M., Keith, B. J., Ee Ooi, H., Kinsman, T., Heslop, P., & Connolly, B. A. (2014). DNA polymerase hybrids derived from the family-B enzymes of Pyrococcus furiosus and Thermococcus kodakarensis: Improving performance in the polymerase chain reaction. Frontiers in Microbiology, 5, 224.

    Article  Google Scholar 

  18. Kitabayashi, M., Nishiya, Y., Esaka, M., Itakura, M., & Imanaka, T. (2002). Gene cloning and polymerase chain reaction with proliferating cell nuclear antigen from Thermococcus kodakaraensis KOD1. Bioscience, Biotechnology, and Biochemistry, 66, 2194–2200.

    Article  CAS  Google Scholar 

  19. Wang, Y., Prosen, D. E., Mei, L., Sullivan, J. C., Finney, M., & Vander Horn, P. B. (2004). A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro. Nucleic Acids Research, 32, 1197–1207.

    Article  CAS  Google Scholar 

  20. Lawyer, F. C., Stoffel, S., Saiki, R. K., Myambo, K., Drummond, R., & Gelfand, D. H. (1989). Isolation, characterization, and expression in Escherichia coli of the DNA polymerase gene from Thermus aquaticus. Journal of Biological Chemistry, 264, 6427–6437.

    CAS  Google Scholar 

  21. Mroczkowski, B. S., Huvar, A., Lernhardt, W., Misono, K., Nielson, K., & Scott, B. (1994). Secretion of thermostable DNA-polymerase using a novel baculovirus vector. Journal of Biological Chemistry, 269, 13522–13528.

    CAS  Google Scholar 

  22. Angers, M., Cloutier, J. F., Castonguay, A., & Drouin, R. (2001). Optimal conditions to use Pfu exo(−) DNA polymerase for highly efficient ligation-mediated polymerase chain reaction protocols. Nucleic Acids Research, 29, E83.

    Article  CAS  Google Scholar 

  23. Kato, T., Kajikawa, M., Maenaka, K., & Park, E. Y. (2010). Silkworm expression system as a platform technology in life science. Applied Microbiology and Biotechnology, 85, 459–470.

    Article  CAS  Google Scholar 

  24. Ono, C., Nakatsukasa, T., Nishijima, Y., Asano, S.-I., Sahara, K., & Bando, H. (2007). Construction of the BmNPV T3 bacmid system and its application to the functional analysis of BmNPV he65. Journal of Insect Biotechnology and Sericology, 76, 161–167.

    CAS  Google Scholar 

  25. O’Reilly, D. R., Miller, L., & Luckow, V. A. (1992). Baculovirus expression vectors: A laboratory manual (pp. 216–234). New York: Oxford University Press.

    Google Scholar 

  26. Masuda, A., Xu, J., Mitsudome, T., Morokuma, D., Mon, H., Banno, Y., et al. (2015). Improvement of Endo-β-N-acetylglucosaminidase H production using silkworm-baculovirus protein expression system. Journal of Asia-Pacific Entomology, 18, 175–180.

    Article  CAS  Google Scholar 

  27. Xu, J., Zhang, P., Kusakabe, T., Mon, H., Li, Z., Zhu, L., et al. (2015). Comparative proteomic analysis of hemolymph proteins from Autographa californica multiple nucleopolyhedrovirus (AcMNPV)-sensitive or -resistant silkworm strains during infections. Comparative Biochemistry and Physiology Part D: Genomics Proteomics, 16, 36–47.

    CAS  Google Scholar 

  28. Bergen, K., Betz, K., Welte, W., Diederichs, K., & Marx, A. (2013). Structures of KOD and 9 degrees N DNA polymerases complexed with primer template duplex. ChemBioChem, 14, 1058–1062.

    Article  CAS  Google Scholar 

  29. Maesaki, R., Satoh, R., Taoka, M., Kanaba, T., Asano, T., Fujita, C., et al. (2014). Efficient and cost effective production of active-form human PKB using silkworm larvae. Scientific Reports, 4, 6016.

    Article  CAS  Google Scholar 

  30. Toth, A. M., Kuo, C.-W., Khoo, K.-H., & Jarvis, D. L. (2014). A new insect cell glycoengineering approach provides baculovirus-inducible glycogene expression and increases human-type glycosylation efficiency. Journal of Biotechnology, 182–183, 19–29.

    Article  Google Scholar 

  31. Mabashi-Asazuma, H., Kuo, C.-W., Khoo, K.-H., & Jarvis, D. L. (2014). A novel baculovirus vector for the production of nonfucosylated recombinant glycoproteins in insect cells. Glycobiology, 24, 325–340.

    Article  CAS  Google Scholar 

  32. Berger, I., Fitzgerald, D. J., & Richmond, T. J. (2004). Baculovirus expression system for heterologous multiprotein complexes. Nature Biotechnology, 22, 1583–1587.

    Article  CAS  Google Scholar 

  33. Mansouri, M., Bellon-Echeverria, I., Rizk, A., Ehsaei, Z., Cianciolo Cosentino, C., Silva, C. S., et al. (2016). Highly efficient baculovirus-mediated multigene delivery in primary cells. Nature Communications, 7, 11529.

    Article  CAS  Google Scholar 

  34. Lee, J. M., Mon, H., Banno, Y., Iiyama, K., & Takahiro, K. (2012). Bombyx mori strains useful for efficient recombinant protein production using a baculovirus vector. Journal of Biotechnology and Biomaterials, S9, 003.

    Google Scholar 

  35. Mon, H., Lee, J., Fukushima, M., Nagata, Y., Fujii, M., Xu, J., et al. (2013). Production and characterization of the celery mismatch endonuclease CEL II using baculovirus/silkworm expression system. Applied Microbiology and Biotechnology, 97, 6813–6822.

    Article  CAS  Google Scholar 

  36. Mitsudome, T., Xu, J., Nagata, Y., Masuda, A., Iiyama, K., Morokuma, D., et al. (2014). Expression, purification, and characterization of endo-β-N-acetylglucosaminidase H using baculovirus-mediated silkworm protein expression system. Applied Biochemistry and Biotechnology, 172, 3978–3988.

    Article  CAS  Google Scholar 

  37. Mitsudome, T., Mon, H., Xu, J., Li, Z., Lee, J. M., Patil, A. A., et al. (2015). Biochemical characterization of maintenance DNA methyltransferase DNMT-1 from silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 58, 55–65.

    Article  CAS  Google Scholar 

  38. Masuda, A., Xu, J., Mitsudome, T., Nagata, Y., Morokuma, D., Mon, H., et al. (2015). Mass production of an active peptide-N-glycosidase F using silkworm-baculovirus expression system. Molecular Biotechnology, 57, 735–745.

    Article  CAS  Google Scholar 

  39. Morokuma, D., Xu, J., Mon, H., Hirata, K., Hino, M., Kuboe, S., et al. (2015). Human alpha 1-acid glycoprotein as a model protein for glycoanalysis in baculovirus expression vector system. Journal of Asia-Pacific Entomology, 18, 303–309.

    Article  CAS  Google Scholar 

  40. El-Deiry, W. S., Downey, K. M., & So, A. G. (1984). Molecular mechanisms of manganese mutagenesis. Proceedings of the National Academy of Sciences of the United States of America, 81, 7378–7382.

    Article  CAS  Google Scholar 

  41. Nishioka, M., Mizuguchi, H., Fujiwara, S., Komatsubara, S., Kitabayashi, M., Uemura, H., et al. (2001). Long and accurate PCR with a mixture of KOD DNA polymerase and its exonuclease deficient mutant enzyme. Journal of Biotechnology, 88, 141–149.

    Article  CAS  Google Scholar 

  42. Kuroita, T., Matsumura, H., Yokota, N., Kitabayashi, M., Hashimoto, H., Inoue, T., et al. (2005). Structural mechanism for coordination of proofreading and polymerase activities in archaeal DNA polymerases. Journal of Molecular Biology, 351, 291–298.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Imanishi (National Institute of Agrobiological Sciences, Japan) for providing the NIAS-Bm-oyanagi2 (BmO2) cell line.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Xu or Jae Man Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1531 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamashita, M., Xu, J., Morokuma, D. et al. Characterization of Recombinant Thermococcus kodakaraensis (KOD) DNA Polymerases Produced Using Silkworm-Baculovirus Expression Vector System. Mol Biotechnol 59, 221–233 (2017). https://doi.org/10.1007/s12033-017-0008-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-017-0008-9

Keywords

Navigation