Skip to main content

Advanced Protein Expression Using Bombyx mori Nucleopolyhedrovirus (BmNPV) Bacmid in Silkworm

  • Chapter
  • First Online:
Short Views on Insect Genomics and Proteomics

Part of the book series: Entomology in Focus ((ENFO,volume 4))

  • 1086 Accesses

Abstract

An expression system using a Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid has been developed and used for efficient expression of protein using silkworm. Silkworm can sustain large-scale production of recombinant proteins due to its ease of rearing and scaling-up. Our chapter focuses on the modification of a BmNPV bacmid for a more efficient protein expression system. For example, we discuss how to achieve construction of a stronger promoter, less proteolytic degradation of expressed proteins, and a chaperone-coexpressed expression system. We describe the application of functional BmNPV particles purified from silkworm hemolymph to vaccines, antibody production, and transmembrane protein analysis. For human use, the major problem of proteins produced in silkworm is contamination by adventitious agents and protein quality. Of special concern is that N-glycosylation in silkworms is of a high-mannose type in most cases, which is different from the complex type found in mammals. We end by looking to future prospects for integration/applications of protein expression systems with silkworm biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

α4GnT:

Human α1,4-N-acetylglucosaminyltransferase

AcMNPV:

Autographa californica multiple nucleopolyhedrovirus

ADCC:

Antibody-dependent cell-mediated cytotoxicity

β3GnT:

Human β1,3-N-acetylglucosaminyltransferase

BiP:

Human heavy chain-binding protein

Bm:

Bombyx mori

BmNPV:

Bombyx mori nucleopolyhedrovirus

BmNPV CP− (CP−):

Cysteine protease-deficient BmNPV

BmNPV CP− Chi− (CP−Chi−):

Cysteine protease- and chitinase-deficient BmNPV

CNX:

Human calnexin

CRT:

Human calreticulin

CSFV:

Classical swine fever virus

DDS:

Drug delivery system

ELISA:

Enzyme-linked immunosorbent assay

ERp:

Human ERp57

FMDV:

Foot-and-mouth disease virus

GFP:

Green fluorescent protein

HA:

Hemagglutinin

Hsp70:

Heat shock protein 70

IgG:

Immunoglobulin G

IL-5:

Interleukin-5

LUV:

Large unilamellar vesicle

MSG:

Middle silk gland

PIT, 7d:

Post-injection time, 7 days

PSG:

Posterior silk gland

RSV:

Rous sarcoma virus

RV:

Rabies virus

SAG1:

Surface antigen 1

SRB:

Sulforhodamine B

SRS2:

Surface antigen 1-related sequence 2

ST6Gal1:

α2,6-sialyltransferase 1

VLP:

Virus-like particle

References

  1. Maeda, S., Kawai, T., Obinata, M., Fujiwara, H., Horiuchi, T., Saeki, Y., Sato, Y., & Furusawa, M. (1985). Production of human α-interferon in silkworm using a baculovirus vector. Nature, 315, 592–594.

    Article  CAS  PubMed  Google Scholar 

  2. Miyajima, A., Schreurs, J., Otsu, K., Kondo, A., Arai, K., & Maeda, S. (1987). Use of the silkworm, Bombyx mori, and an insect baculovirus vector for high-level expression and secretion of biologically active mouse interleukin-3. Gene, 58, 273–281.

    Article  CAS  PubMed  Google Scholar 

  3. Motohashi, T., Shimojima, T., Fukagawa, T., Maenaka, K., & Park, E. Y. (2005). Efficient large-scale protein production of larvae and pupae of silkworm by Bombyx mori nuclear polyhedrosis virus bacmid system. Biochemistry Biophysics Research Communication, 326, 564–569.

    Article  CAS  Google Scholar 

  4. Mathavan, S., Gautvik, V. T., Rokkones, E., Olstad, O. K., Kareem, B. N., Maeda, S., & Guatvik, K. M. (1995). High-level production of human parathyroid hormone in Bombyx mori larvae and BmN cells using recombinant baculovirus. Gene, 167, 33–39.

    Article  CAS  PubMed  Google Scholar 

  5. Higashihashi, N., Arai, Y., Enjo, T., Horiuchi, T., Saeki, Y., Sakano, K., Sato, Y., Takeda, K., Takashina, S., & Takahashi, T. (1991). High-level expression and characterization of hepatitis B virus surface antigen in silkworm using a baculovirus vector. Journal of Virological Methods, 35, 159–167.

    Article  CAS  PubMed  Google Scholar 

  6. Qui, P., Qin, J., Ding, Y., & Zhu, D. (1995). Yeast-prepro-alpha-factor-leader-region-directed synthesis and secretion of truncated human macrophage colony-stimulating factor in the silkworm Bombyx mori. Biotechnology and Applied Biochemistry, 21, 67–75.

    Google Scholar 

  7. Wu, X., Kamei, K., Sato, H., Sato, S., Takano, R., Ichida, M., Mori, H., & Hara, S. (2001). High-level expression of human acidic fibroblast growth factor and basic fibroblast growth factor in silkworm (Bombyx mori L.) using recombinant baculovirus. Protein Expression and Purification, 21, 192–200.

    Article  CAS  PubMed  Google Scholar 

  8. Park, E. Y., Kageshima, A., Kwon, M. S., & Kato, T. (2007). Enhanced production of secretory beta1,3-N-acetylglucosaminyltransferase 2 fusion protein into hemolymph of Bombyx mori larvae using recombinant BmNPV bacmid integrated signal peptide. Journal of Biotechnology, 129, 681–688.

    Article  CAS  PubMed  Google Scholar 

  9. Suzuki, T., Kanaya, T., Okazaki, H., Ogawa, K., Usami, A., Watanabe, H., Kadono-Okuda, K., Yamakawa, M., Sato, H., Mori, H., Takahashi, S., & Oda, K. (1997). Efficient protein production using a Bombyx mori nuclear polyhedrosis virus lacking the cysteine proteinase gene. The Journal of General Virology, 78, 3073–3080.

    Article  CAS  PubMed  Google Scholar 

  10. Ishihara, K., Satoh, I., Nittoh, T., Kanaya, T., Okazaki, H., Suzuki, T., Koyama, T., Sakamoto, T., Ide, T., & Ohuchi, K. (1999). Preparation of recombinant rat interleukin-5 by baculovirus expression system and analysis of its biological activities. Biochimica et Biophysica Acta, 1451, 48–58.

    Article  CAS  PubMed  Google Scholar 

  11. Hiyoshi, M., Kageshima, A., Kato, T., & Park, E. Y. (2007). Construction of a cysteine protease deficient Bombyx mori multiple nucleopolyhedrovirus bacmid and its application to improve expression of a fusion protein. Journal of Virological Methods, 144, 91–97.

    Article  CAS  PubMed  Google Scholar 

  12. Park, E. Y., Abe, T., & Kato, T. (2008). Improved expression of fusion protein using a cysteine-protease- and chitinase-deficient Bombyx mori (silkworm) multiple nucleopolyhedrovirus bacmid in silkworm larvae. Biotechnology and Applied Biochemistry, 49, 135–140.

    Article  CAS  PubMed  Google Scholar 

  13. Manohar, S. L., Kanamasa, S., Nishina, T., Kato, T., & Park, E. Y. (2010) Enhanced gene expression in insect cells and silkworm larva by modified polyhedrin promoter using repeated burst sequence and very late transcriptional factor-1. Biotechnology and Bioengergy, 107.

    Google Scholar 

  14. Kato, T., Manohar, S. L., Kanamasa, S., Ogata, M., & Park, E. Y. (2012). Improvement of the transcriptional strength of baculovirus very late polyhedrin promoter by repeating its untranslated leader sequences and coexpression with the primary transactivator. Journal of Bioscience and Bioengineering, 113, 694–696.

    Article  CAS  PubMed  Google Scholar 

  15. Ishiyama, S., & Ikada, M. (2010). High-level expression and improved folding of proteins by using the vp39 late promoter enhanced with homologous DNA regions. Biotechnological Letters, 32, 1637–1647.

    Article  CAS  Google Scholar 

  16. Nakajima, M., Kato, T., Kanamasa, S., & Park, E. Y. (2009). Molecular chaperone-assisted production of human alpha-1,4-N-acetylglucosaminyltransferase in silkworm larvae using recombinant BmNPV bacmids. Molecular Biotechnology, 43, 67–75.

    Article  CAS  PubMed  Google Scholar 

  17. Dojima, T., Nishina, T., Kato, T., Uno, T., Yagi, H., Kato, K., Ueda, H., & Park, Y. (2010). Improved secretion of molecular chaperone-assisted human IgG in silkworm, and no alteration in their N-linked glycan structures. Biotechnology Progress, 26, 232–238.

    CAS  PubMed  Google Scholar 

  18. Theilmann, D. A., & Stewart, S. (1992). Molecular analysis of the trans-activating IE-2 gene of Orgyia pseudotsugata multicapsid nuclear polyhedrosis virus. Virology, 187, 84–96.

    Article  CAS  PubMed  Google Scholar 

  19. Higgins, M. K., Demir, M., & Tate, C. G. (2003). Calnexin coexpression and the use of weaker promoters increase the expression of correctly assembled Shaker potassium channel in insect cells. Biochim Biophys Acta, 1610, 124–132.

    Article  CAS  PubMed  Google Scholar 

  20. Hsu, T. A., & Betenbaugh, M. J. (1997). Coexpression of molecular chaperone BiP improves immunoglobulin solubility and IgG secretion from Trichoplusia ni insect cells. Biotechnology Progress, 13, 96–104.

    Article  CAS  PubMed  Google Scholar 

  21. Kato, T., Murata, T., Usui, T., & Park, E. Y. (2005). Improvement of the production of GFPuv-beta1,3-N-acetylglucosaminyltransferase 2 fusion protein using a molecular chaperone-assisted insect-cell-based expression system. Biotechnology and Bioengineering, 89, 424–433.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, L., Wu, G., Tate, C. G., Lookene, A., & Olivecrona, G. (2003). Calreticulin promotes folding/dimerization of human lipoprotein lipase expressed in insect cells (Sf21). The Journal of Biological Chemistry, 278, 29344–29351.

    Article  CAS  PubMed  Google Scholar 

  23. Kajikawa, M., Sasaki, K., Wakimoto, Y., Toyooka, M., Motohashi, T., Shimojima, T., Takada, S., Park, E. Y., & Maenaka, K. (2009). Efficient silkworm expression of human GPCR (nociceptin receptor) by a Bombyx mori bacmid DNA system. Biochemical and Biophysical Research Communications, 385, 375–379.

    Article  CAS  PubMed  Google Scholar 

  24. Muraki, M., & Honda, S. (2010). Efficient production of human Fas receptor extracellular domain-human IgG1 heavy chain Fc domain fusion protein using baculovirus/silkworm expression system. Protein Expression and Purification, 73, 209–216.

    Article  CAS  PubMed  Google Scholar 

  25. Kato, T., Kajikawa, M., Maenaka, K., & Park, E. Y. (2010). Silkworm expression system as a platform technology in life science. Applied Microbiology and Biotechnology, 85, 459–470.

    Article  CAS  PubMed  Google Scholar 

  26. Du, D., Kato, T., Nabi, A. H., Suzuki, F., & Park, E. Y. (2008). Expression of functional human (pro)renin receptor in silkworm (Bombyx mori) larvae using BmMNPV bacmid. Biotechnology and Applied Biochemistry, 49, 195–202.

    Article  CAS  PubMed  Google Scholar 

  27. Deo, V. K., Yoshimatsu, K., Otsuki, T., Dong, J., Kato, T., & Park, E. Y. (2013). Display of Neospora caninum surface protein related sequence 2 on Rous sarcoma virus-derived gaga protein virus-like particles. Journal of Biotechnology, 165, 69–75.

    Article  CAS  PubMed  Google Scholar 

  28. Chen, J., Wu, X. F., & Zhang, Y. Z. (2006). Expression, purification and characterization of human GM-CSF using silkworm pupae (Bombyx mori) as a bioreactor. Journal of Biotechnology, 123, 236–247.

    Article  CAS  PubMed  Google Scholar 

  29. Kato, T., Thompson, J. R., & Park, E. Y. (2013). Construction of new ligation-independent cloning vectors for the expression and purification of recombinant proteins in silkworms using BmNPV bacmid system. PLoS One, 8, e64007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, Y., Wu, X., Liu, G., Cao, C., Huang, H., Xu, Z., & Liu, J. (2005). Expression and porcine lactoferrin by using recombinant baculovirus in silkworm, Bombyx mori L., and its purification and characterization. Applied Microbiology and Biotechnology, 69, 385–389.

    Article  CAS  PubMed  Google Scholar 

  31. Zhou, N., Zhang, Y., Jing, W., Li, Z., & Wu, X. (1995). High expression of HBV S gene in Bombyx mori cell culture and in silkworms. Chinese Journal of Biotechnology, 11, 149–156.

    CAS  PubMed  Google Scholar 

  32. Dojima, T., Nishina, T., Kato, T., Uno, T., Yagi, H., Kato, K., & Park, E. Y. (2009). Comparison of the N-glycosylation of human beta1,3-N-acetylglucosaminyltransferase 2 expressed in insect cells and silkworm larvae. Journal of Biotechnology, 143, 27–33.

    Article  CAS  PubMed  Google Scholar 

  33. Ogata, M., Nakajima, M., Kato, T., Obara, T., Yagi, H., Kato, K., Usui, T., & Park, E. Y. (2009). Synthesis of sialoglycopolypeptide for potentially blocking influenza virus infection using a rat alpha 2,6-sialyltransferase expressed in BmNPV bacmid-injected silkworm larvae. BMC Biotechnology, 9, 54.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Berger, I., Fizgerald, D. J., & Richimond, T. J. (2004). Baculovirus expression system for heterologous multiprotein complexes. Nature Biotechnology, 22, 1583–1587.

    Article  CAS  PubMed  Google Scholar 

  35. Yao, L., Wang, S., Su, S., Yao, N., He, J., Peng, L., & Sun, J. (2012). Construction of a baculovirus-silkworm multigene expression system and its application on producing virus-like particles. PLoS One, 7, e32510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou, Y., Chen, H., Li, X., Wang, Y., Chen, K., Zhang, S., Meng, X., Lee, E. Y., & Lee, M. Y. (2011). Production of recombinant human DNA polymerase delta in Bombyx mori bioreactor. PLoS One, 6, e22224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fraser, M. J., Ciszczon, T., Elick, T., & Bauser, C. (1996). Precise excision of TTAA-specific lepidopteran transposons piggybac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Molecular Biology, 5, 141–151.

    Article  CAS  PubMed  Google Scholar 

  38. Tamura, T., Thibert, C., Royer, C., Kanda, T., Abraham, E., Kamba, M., Komoto, N., Thomas, J. L., Mauchamp, B., Chavancy, G., Shirk, P., Fraser, M., Prudhomme, J. C., & Couble, P. (2000). Germline transformation of the silkworm Bombyx mori L. using a piggybac transposon-derived vector. Nature Biotechnology, 18, 81–84.

    Article  CAS  PubMed  Google Scholar 

  39. Tomita, M. (2011). Transgenic silkworms that weave recombinant proteins into silk cocoons. Biotechnological Letters, 33, 645–654.

    Article  CAS  Google Scholar 

  40. Kurihara, H., Sezutsu, H., Tamura, T., & Yamada, K. (2007). Production of an active feline interferon in the cocoon of transgenic silkworms using the fibroin H-chain expression system. Biochemical and Biophysical Research Communications, 355, 976–980.

    Article  CAS  PubMed  Google Scholar 

  41. Royer, C., Jalabert, A., Da Rocha, M., Grenier, A. M., Mauchamp, B., Couble, P., & Chavancy, G. (2005). Biosynthesis and cocoon-export of a recombinant globular protein in transgenic silkworms. Trangenic Research, 14, 463–472.

    Article  CAS  Google Scholar 

  42. Tatematsu, K., Sezutsu, H., & Tamura, T. (2012). Utilization of transgenic silkworms for recombinant protein production. Journal of Biotechnology and Biomaterials, S9, 004.

    Google Scholar 

  43. Tomita, M., Munetsuna, H., Sato, T., Adachi, T., Hino, R., Hayashi, M., Shimizu, K., Nakamura, N., Tamura, T., & Yoshizato, K. (2003). Transgenic silkworms produce recombinant human type II procollagen in cocoons. Nature Biotechnology, 21, 52–56.

    Article  CAS  PubMed  Google Scholar 

  44. Ogawa, S., Tomita, M., Shimizu, K., & Yoshizato, K. (2007). Generation of a transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon: production human serum albumin. Journal of Biotechnology, 128, 531–544.

    Article  CAS  PubMed  Google Scholar 

  45. Tomita, M., Hino, R., Ogawa, S., Iizuka, M., Adachi, T., Shimizu, K., Sotoshiro, H., & Yoshizato, K. (2007). A germline transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon. Trangenic Research, 16, 449–465.

    Article  CAS  Google Scholar 

  46. Iizuka, M., Ogawa, S., Takeuchi, A., Nakakita, S., Kubo, Y., Miyawaki, Y., Hirabayashi, J., & Tomita, M. (2009). Production of a recombinant mouse monoclonal antibody in transgenic silkworm cocoons. FEBS Journal, 276, 5806–5820.

    Article  CAS  PubMed  Google Scholar 

  47. Sugiura, T., Sugita, S., Imagawa, H., Kanaya, T., Ishiyama, S., Saeki, N., Uchiyama, A., Tanigawa, M., & Kuwano, A. (2001). Serological diagnosis of equine influenza using the hemagglutinin protein produced in a baculovirus expression system. Journal of Virological Methods, 98, 1–8.

    Article  CAS  PubMed  Google Scholar 

  48. Okuda, M., Taniguchi, T., & Takamiya, O. (2012). Properties of a recombinant bovine tissue factor expressed by silkworm pupae and its performance as an Owren-type prothrombin time reagent for warfarin monitoring. Thrombosis Research, 130, 520–527.

    Article  CAS  PubMed  Google Scholar 

  49. Li, S., Ip, D. T., Lin, H. Q., Liu, J. M., Miao, Y. G., Ke, L. J., & Wan, D. C. (2010). High-level expression of functional recombinant human butyrylcholinesterase in silkworm larvae by Bac-to-Bac system. Chemico-Biological Interactions, 187, 101–105.

    Article  CAS  PubMed  Google Scholar 

  50. Tanaka, T. (2012). Manufacturing pharmaceutical-grade interferons using silkworm-baculovirus system. Journal of Biotechnology and Biomaterials, S9, 002.

    Article  Google Scholar 

  51. Usami, A., Ishiyama, S., Enomoto, C., Okazaki, H., Higuchi, K., Ikeda, M., Yamamto, T., Sugai, M., Ishikawa, Y., Hosaka, Y., Koyama, T., Tobita, Y., Ebihara, S., Mochizuki, T., Asano, Y., & Nagaya, H. (2011). Comparison of recombinant protein expression in a baculovirus system in insect cells (Sf-9) and silkworm. Journal of Biochemistry, 149, 219–227.

    Article  CAS  PubMed  Google Scholar 

  52. Lee, K. S., Sohn, M. R., Kim, B. Y., Choo, Y. M., Woo, S. D., Yoo, S. K., Je, Y. H., Choi, J. Y., Roh, J. Y., Koo, H. N., & Jin, B. R. (2012). Production of classical swine fever virus envelope glycoprotein E2 as recombinant polyhedra in baculovirus-infected silkworm larvae. Molecular Biotchnology, 50, 211–220.

    Article  Google Scholar 

  53. Li, Z., Yi, Y., Yin, X., Zhang, Z., & Liu, J. (2008). Expression of foot-and mouth disease virus capsid proteins in silkworm-baculovirus expression system and its utilization as a subunit vaccine. PLoS One, 3, e2273.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Li, Z., Yi, Y., Yin, X., Zhang, Y., Liu, M., Liu, H., Li, X., Li, Y., Zhang, Z., & Liu, J. (2012). Development of a foot-and-mouth disease virus serotype A empty capsid subunit vaccine using silkworm. PLoS One, 7, e43849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yin, X., Li, Z., Li, J., Yi, Y., Zhang, Y., Li, X., Li, B., Yang, B., Lan, X., Li, Y., Jiao, W., Zhang, Z., & Liu, J. (2013). Rabies virus nucleoprotein expressed in silkworm pupae at high-levels and evaluation of immune responses in mice. Journal of Biotechnology, 163, 333–338.

    Article  CAS  PubMed  Google Scholar 

  56. Otsuki, T., Dong, J., Kato, T., & Park, E. Y. (2013). Expression, purification and antigenicity of Neospora caninum-antigens using silkworm larvae targeting for subunit vaccines. Veterinary Parasitology, 192, 284–287.

    Article  CAS  PubMed  Google Scholar 

  57. Yoshimoto, M., Otsuki, T., Itagaki, K., Kato, T., Kohsaka, T., Matsumoto, Y., Ike, K., & Park, E. Y. (2015). Evaluation of recombinant Neospora caninum antigens purified from silkworm larvae for the protection of N. caninum infection in mice. Journal of Bioscience and Bioengergy (in press).

    Google Scholar 

  58. Xue, R., Liu, L., Cao, G., Xu, S., Li, J., Zou, Y., Chen, H., & Gong, C. (2013). Oral vaccination of BacFish-vp6 against grass carp reovirus evoking antibody response in grass carp. Fish & Shellfish Immunology, 34, 348–355.

    Article  CAS  Google Scholar 

  59. Lua, L. H. L., Connors, N. K., Sainsbury, F., Chuan, Y. P., Wibowo, N., & Middelberg, A. P. J. (2014). Bioengineering virus-like particles as vaccines. Biotechnology and Bioengineering, 111, 425–440.

    Article  CAS  PubMed  Google Scholar 

  60. Feng, H., Liang, M., Wang, H. L., Zhang, T., Zhao, P. S., Shen, X. J., Zhang, R. Z., Hu, G. Q., Gao, Y. G., Wang, C. Y., Wang, T. C., Zhang, W., Yang, S. T., & Xia, X. Z. (2011). Recombinant canine parvovirus-like particles express foreign epitopes in silkworm pupae. Veterinary Microbiology, 154, 49–57.

    Article  CAS  PubMed  Google Scholar 

  61. Deo, V. K., Yui, M., Alam, M. J., Yamazaki, M., Kato, T., & Park, E. Y. (2014). A model for targeting colon carcinoma cells using single-chain variable fragments anchored on virus-like particles via glycosyl phosphatidylinositol anchor. Pharmaceutical Research, 31, 2166–2177.

    Google Scholar 

  62. Tsuji, Y., Deo, V. K., Kato, T., & Park, E. Y. (2011). Park EY (2011) Production of Rous sarcoma virus-like particles displaying human transmembrane protein in silkworm larvae and its application to ligand-receptor binding assay. Journal of Biotechnology, 155, 185–192.

    Article  CAS  PubMed  Google Scholar 

  63. Lu, H. Y., Chen, Y. H., & Liu, H. J. (2012). Baculovirus as a vaccine vector. Bioengineered, 3, 271–274.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Paul, A., Hasan, A., Rodes, L., & Sangaralingam, P. S. (2014). Bioengineering baculoviruses as new class of therapeutics using micro and nanotechnologies: Principles, prospects and challenges. Advanced Drug Delivery Reviews, 71, 115–130.

    Article  CAS  PubMed  Google Scholar 

  65. Kato, T., Manoha, S. L., Tanaka, S., & Park, E. Y. (2009). High-titer preparation of Bombyx mori nucleopolyhedrovirus (BmNPV) displaying recombinant protein in silkworm larvae by size exclusion chromatography and its characterization. BMC Biotechnology, 9, 55.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kato, T., Suzuki, F., & Park, E. Y. (2011). Purification of functional baculovirus particles from silkworm larval hemolymph and their use as nanoparticles for the detection of human prorenin receptor (PRR) binding. BMC Biotechnology, 11, 60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kato, T., Otsuki, T., Yoshimoto, M., Itagaki, K., Kohsaka, T., Matsumoto, Y., Ike, K., & Park, E. Y. (2015). Bombyx mori nucleopolyhedrovirus displaying Neospora caninum antigens as a vaccine candidate against N. caninum infection in mice. Molecular Biotechnology, 57, 145–154.

    Article  CAS  PubMed  Google Scholar 

  68. Lee, J. M., Mori, H., Banno, Y., Iiyama, K., & Kusakabe, T. (2012). Bombyx mori strains useful for efficient recombinant protein production using a baculovirus vector. Journal of Biotechnology and Biomatrials, 120(6), 715–719.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enoch Y. Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kato, T., Park, E.Y. (2016). Advanced Protein Expression Using Bombyx mori Nucleopolyhedrovirus (BmNPV) Bacmid in Silkworm. In: Raman, C., Goldsmith, M., Agunbiade, T. (eds) Short Views on Insect Genomics and Proteomics. Entomology in Focus, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-24244-6_7

Download citation

Publish with us

Policies and ethics