Skip to main content
Log in

Exploring the Feasibility of the Sec Route to Secrete Proteins Using the Tat Route in Streptomyces lividans

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Streptomyces lividans uses mainly two pathways to target secretory proteins to the cytoplasmic membrane. The major pathway (Sec pathway) transports pre-proteins using the signal recognition particle, and the minor Tat pathway is responsible for the secretion using a folded conformation of a relatively low number of proteins. The signal peptides of the Sec-dependent alpha-amylase and the Tat-dependent agarase were interchanged and fused in-frame to the corresponding mature part of the other enzyme. Alpha-amylase was unable to use the Tat route when fused to the agarase signal peptide, while agarase used the Sec route when it was targeted by the alpha-amylase signal peptide. In addition to the signal peptide some yet unidentified parts of the secreted proteins may play a role in selecting the secretory route. Structure predictions for the Tat- and Sec-dependent proteins suggest that less structured proteins are more likely to be candidates for the Tat route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anné, J., Maldonado, B., Van Impe, J., Van Mellaert, L., & Bernaerts, K. (2012). Recombinant protein production and streptomycetes. Journal of Biotechnology, 158, 159–167.

    Article  Google Scholar 

  2. Palacín, A., de la Fuente, R., Valle, I., Rivas, L. A., & Mellado, R. P. (2003). Streptomyces lividans contains a minimal functional signal recognition particle that is involved in protein secretion. Microbiology, 149, 2435–2442.

    Article  Google Scholar 

  3. Berks, B. C., Palmer, T., & Sargent, F. (2005). Protein targeting by the bacterial twin-arginine translocation (Tat) pathway. Current Opinion in Microbiology, 8, 174–181.

    Article  CAS  Google Scholar 

  4. Jongbloed, J. D., Antelmann, H., Hecker, M., Nijland, R., Bron, S., Airaksinen, U., et al. (2002). Selective contribution of the twin-arginine translocation pathway to protein secretion in Bacillus subtilis. Journal of Biological Chemistry, 277, 44068–44078.

    Article  CAS  Google Scholar 

  5. Widdick, D. A., Dilks, K., Chandra, G., Bottrill, A., Naldrett, M., Pohlschroder, M., & Palmer, T. (2006). The twin-arginine translocation pathway is a major route of protein export in Streptomyces coelicolor. Proceedings of the National Academy of Sciences of the United States of America, 103, 17927–17932.

    Article  CAS  Google Scholar 

  6. Mellado, R. P. (2011). Summing up particular features of protein secretion in Streptomyces lividans. World Journal of Microbiology & Biotechnology, 27, 2231–2237.

    Article  CAS  Google Scholar 

  7. Schaerlaekens, K., Schierová, M., Lammertyn, E., Geukens, N., Anné, J., & Van Mellaert, L. (2001). Twin-arginine translocation pathway in Streptomyces lividans. Journal of Bacteriology, 183, 6727–6732.

    Article  CAS  Google Scholar 

  8. De Keersmaeker, S., Vrancken, K., Van Mellaert, L., Anné, J., & Geukens, N. (2007). The Tat pathway in Streptomyces lividans: Interaction of Tat subunits and their role in translocation. Microbiology, 153, 1087–1094.

    Article  Google Scholar 

  9. Palmer, T., & Berks, B. C. (2012). The twin-arginine translocation (Tat) protein export pathway. Nature Reviews Microbiology, 10, 483–496.

    CAS  Google Scholar 

  10. Hopwood, D. A., Bibb, M. J., & Chater, K. F. (1985). Genetic manipulation of Streptomyces. A laboratory manual. Norwich: John Innes Foundation.

    Google Scholar 

  11. Palomino, C., & Mellado, R. P. (2008). Influence of a Streptomyces lividans SecG functional analogue on protein secretion. International Microbiology, 11, 25–31.

    CAS  Google Scholar 

  12. Ward, J. M., Janssen, G. R., Kieser, T., Bibb, M. J., Buttner, M. J., & Bibb, M. J. (1986). Construction and characterisation of a series of multi-copy promoter-probe vectors Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator. Molecular and General Genetics, 203, 468–475.

    Article  CAS  Google Scholar 

  13. Palacín, A., Parro, V., Geukens, N., Anné, J., & Mellado, R. P. (2002). SipY is the Streptomyces lividans type I signal peptidase exerting a major effect on protein secretion. Journal of Bacteriology, 184, 4875–4880.

    Article  Google Scholar 

  14. Parro, V., & Mellado, R. P. (1993). Heterologous recognition in vivo of promoter sequences from the Streptomyces coelicolor dagA gene. FEMS Microbiology Letters, 106, 347–356.

    Article  CAS  Google Scholar 

  15. Isiegas, C., Parro, V., & Mellado, R. P. (1999). Streptomyces lividans as a host for the production and secretion of Escherichia coli TEM α-lactamase. Letters in Applied Microbiology, 28, 321–326.

    Article  CAS  Google Scholar 

  16. Gust, B., Challis, G. L., Fowler, K., Kieser, T., & Chater, K. F. (2003). PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterne soil odor geosmin. Proceedings of the National Academy of Sciences of the United States of America, 100, 1541–1546.

    Article  CAS  Google Scholar 

  17. Escutia, M. R., Val, G., Palacín, A., Geukens, N., Anné, J., & Mellado, R. P. (2006). Compensatory effect of the minor Streptomyces lividans type I signal peptidases on the SipY major signal peptidase deficiency as determined by extracellular proteome analysis. Proteomics, 6, 4137–4146.

    Article  CAS  Google Scholar 

  18. Thompson, C. J., Kieser, T., Ward, J. M., & Hopwood, D. A. (1982). Physical analysis of antibiotic-resistant genes from Streptomyces and their use in vector construction. Gene, 20, 51–62.

    Article  CAS  Google Scholar 

  19. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  20. Timmons, T. M., & Dunbar, B. S. (1990). Protein blotting and immunodetection. Methods in Enzymology, 182, 679–688.

    Article  CAS  Google Scholar 

  21. Gullón, S., Vicente, L. R., & Mellado, R. P. (2012). A novel two-component system involved in secretion stress response in Streptomyces lividans. PLoS ONE, 7(11), e48987. doi:10.1371/journal.pone.0048987.

    Article  Google Scholar 

  22. Parro, V., & Mellado, R. P. (1994). Effect of glucose on agarase overproduction by Streptomyces. Gene, 145, 49–55.

    Article  CAS  Google Scholar 

  23. Rabindran, S. K., Haroun, R. I., Wisniewski, J., & Wu, C. (1993). Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science, 259, 230–234.

    Article  CAS  Google Scholar 

  24. Rice, P., Longden, I., & Bleasby, A. (2000). EMBOSS: The European molecular biology open software suite. Trends in Genetics, 16, 276–277. doi:10.1016/S0168-9525(00)02024-2.

    Article  CAS  Google Scholar 

  25. Cole, C., Barber, J. D., & Barton, G. J. (2008). The Jpred 3 secondary structure prediction server. Nucleics Acids Research, 36(suppl 2), W197–W201.

    Article  CAS  Google Scholar 

  26. Prilusky, J., Felder, C. E., Zeev-Ben-Mordehai, T., Rydberg, E. H., Man, O., Beckmann, J. S., et al. (2005). FoldIndex: A simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics, 21, 3435–3438. doi:10.1093/bioinformatics/bti537.

    Article  CAS  Google Scholar 

  27. Lin, H. N., Sung, T. Y., Ho, S. Y., & Hsu, W. L. (2010). Improving protein secondary structure prediction based on short subsequences with local structure similarity. BMC Genomics, 11(Suppl 4), S4. doi:10.1186/1471-2164-11-S4-S4.

    Article  CAS  Google Scholar 

  28. Källberg, M., Wang, H., Wang, S., Peng, J., Wang, Z., Lu, H., & Xu, J. (2012). Template-based protein structure modelling using the RaptorX web server. Nature Protocols, 7, 1511–1522. doi:10.1038/nprot.2012.085.

    Article  Google Scholar 

  29. Ferrè, F., & Clote, P. (2006). DIANNA 1.1: An extension of the DIANNA web server for ternary cysteine classification. Nucleic Acids Research, 34(suppl 2), W182–W185.

    Article  Google Scholar 

  30. Schaerlaekens, K., Van Mellaert, L., Lammertyn, E., Geukens, N., & Anné, J. (2004). The importance of the Tat-dependent protein secretion pathway in Streptomyces as revealed by phenotypic changes in tat deletion mutants and genome analysis. Microbiology, 150, 21–31.

    Article  CAS  Google Scholar 

  31. Cristóbal, S., de Gier, J. W., Nielsen, H., & von Heijne, G. (1999). Competition between Sec-and TAT-dependent protein translocation in Escherichia coli. EMBO Journal, 18, 2982–2990.

    Article  Google Scholar 

  32. Gullón, S., Palomino, C., Navajas, R., Paradela, A., & Mellado, R. P. (2012). Translocase and major signal peptidase malfunctions affect aerial mycelium formation in Streptomyces lividans. Journal of Biotechnology, 160, 112–122.

    Article  Google Scholar 

Download references

Acknowledgments

The Spanish Ministry of the Environment and Rural and Marine affairs has commissioned and supported this research (Grant No. EGO22008). Grant PIE201220E003 from the CSIC also supported this research. We wish to thank C. Palomino for her contribution to obtaining S. lividanstatC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael P. Mellado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gullón, S., Vicente, R.L., Valverde, J.R. et al. Exploring the Feasibility of the Sec Route to Secrete Proteins Using the Tat Route in Streptomyces lividans . Mol Biotechnol 57, 931–938 (2015). https://doi.org/10.1007/s12033-015-9883-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-015-9883-0

Keywords

Navigation