Skip to main content
  • 1951 Accesses

Abstract

Bacterial cells (gram positive and negative) utilize generalized secretory pathways such as Sec and Tat pathways that are ubiquitous to all domains of life. Sec system transports unfolded proteins while Tat system transports folded proteins. These systems result in the export of the substrate protein to extracellular environment directly in gram-positive bacteria and after passing through the periplasmic space in gram-negative bacteria. There are different secretion systems, Type I to Type IX, for translocation of proteins or effector molecules from periplasm to outside of the cell in gram-negative bacteria. These systems are Sec-dependent and Sec-independent depending upon state of the protein during secretion. In gram-positive bacteria, the protein secretion system involves special proteins, SecA2 and sortases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anné, J., Economou, A., & Bernaerts, K. (2016). Protein secretion in gram-positive bacteria: From multiple pathways to biotechnology. In F. Bagnoli. & R. Rappuoli. (Eds.), Protein and sugar export and assembly in gram-positive Bacteria. Current topics in microbiology and immunology (Vol. 404), (pp. 267–308). Springer, Cham.

    Google Scholar 

  • Ates, L. S., Houben, E. N., & Bitter, W. (2016). Type VII secretion: A highly versatile secretion system. Microbiology spectrum4(1).

    Google Scholar 

  • Bocian-Ostrzycka, K. M., Grzeszczuk, M. J., Banaś, A. M., & Jagusztyn-Krynicka, E. K. (2017). Bacterial thiol oxidoreductases—from basic research to new antibacterial strategies. Applied Microbiology and Biotechnology, 101(10), 3977–3989.

    Article  CAS  Google Scholar 

  • Braunstein, M., Bensing, B. A., & Sullam, P. M. (2019). The two distinct types of SecA2-Dependent export systems. Microbiology spectrum7(3).

    Google Scholar 

  • Cianfanelli, F. R., Diniz, J. A., Guo, M., De Cesare, V., Trost, M., & Coulthurst, S. J. (2016). VgrG and PAAR proteins define distinct versions of a functional type VI secretion system. PLoS Pathogens, 12(6), e1005735.

    Article  Google Scholar 

  • Clemmensen, H. S., Knudsen, N. P. H., Rasmussen, E. M., Winkler, J., Rosenkrands, I., Ahmad, A., ... & Aagaard, C. (2017). An attenuated Mycobacterium tuberculosis clinical strain with a defect in ESX-1 secretion induces minimal host immune responses and pathology. Scientific reports7, 46666.

    Google Scholar 

  • Delepelaire, P. (2004). Type I secretion in gram-negative bacteria. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research1694(1–3), 149–161.

    Google Scholar 

  • Deng, W., Marshall, N. C., Rowland, J. L., McCoy, J. M., Worrall, L. J., Santos, A. S., ... & Finlay, B. B. (2017). Assembly, structure, function and regulation of type III secretion systems. Nature Reviews Microbiology15(6), 323.

    Google Scholar 

  • Evans, M. L., & Chapman, M. R. (2014). Curli biogenesis: Order out of disorder. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research1843(8), 1551–1558.

    Google Scholar 

  • Feltcher, M. E., & Braunstein, M. (2012). Emerging themes in SecA2-mediated protein export. Nature Reviews Microbiology, 10(11), 779.

    Article  CAS  Google Scholar 

  • Freudl, R. (2018). Signal peptides for recombinant protein secretion in bacterial expression systems. Microbial Cell Factories, 17(1), 52.

    Article  Google Scholar 

  • Gentschev, I., Dietrich, G., & Goebel, W. (2002). The E. coli α-hemolysin secretion system and its use in vaccine development. Trends in microbiology10(1), 39–45.

    Google Scholar 

  • Glew, M. D., Veith, P. D., Chen, D., Gorasia, D. G., Peng, B., & Reynolds, E. C. (2017). PorV is an outer membrane shuttle protein for the type IX secretion system. Scientific Reports, 7(1), 1–14.

    Article  CAS  Google Scholar 

  • Green, E. R., & Mecsas, J. (2016). Bacterial secretion systems: An overview. Microbiology Spectrum, 4. https://doi.org/10.1128/microbiolspec. VMBF-0012-2015.

  • Guo, S., Stevens, C. A., Vance, T. D., Olijve, L. L., Graham, L. A., Campbell, R. L., ... & Braslavsky, I. (2017). Structure of a 1.5-MDa adhesin that binds its Antarctic bacterium to diatoms and ice. Science Advances3(8), e1701440.

    Google Scholar 

  • Lasica, A. M., Ksiazek, M., Madej, M., & Potempa, J. (2017). The type IX secretion system (T9SS): Highlights and recent insights into its structure and function. Frontiers in Cellular and Infection Microbiology, 7, 215.

    Article  Google Scholar 

  • Lenders, M. H., Reimann, S., Smits, S. H., & Schmitt, L. (2013). Molecular insights into type I secretion systems. Biological Chemistry, 394(11), 1371–1384.

    Article  CAS  Google Scholar 

  • Leo, J. C., Grin, I., & Linke, D. (2012). Type V secretion: Mechanism (s) of autotransport through the bacterial outer membrane. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1592), 1088–1101.

    Article  CAS  Google Scholar 

  • Linhartová, I., Bumba, L., Mašín, J., Basler, M., Osička, R., Kamanová, J., ... & Morová, J. (2010). RTX proteins: A highly diverse family secreted by a common mechanism. FEMS microbiology reviews34(6), 1076–1112.

    Google Scholar 

  • Madden, J. C., Ruiz, N., & Caparon, M. (2001). Cytolysin-mediated translocation (CMT): A functional equivalent of type III secretion in gram-positive bacteria. Cell, 104(1), 143–152.

    Article  CAS  Google Scholar 

  • Natale, P., Brüser, T., & Driessen, A. J. (2008). Sec-and Tat-mediated protein secretion across the bacterial cytoplasmic membrane—distinct translocases and mechanisms. Biochimica et Biophysica Acta (BBA)-Biomembranes1778(9), 1735–1756.

    Google Scholar 

  • Paetzel, M., Karla, A., Strynadka, N. C., & Dalbey, R. E. (2002). Signal peptidases. Chemical Reviews, 102(12), 4549–4580.

    Article  CAS  Google Scholar 

  • Palmer, T., & Berks, B. C. (2012). The twin-arginine translocation (Tat) protein export pathway. Nature Reviews Microbiology, 10(7), 483–496.

    Article  CAS  Google Scholar 

  • Pukatzki, S., Ma, A. T., Sturtevant, D., Krastins, B., Sarracino, D., Nelson, W. C., ... & Mekalanos, J. J. (2006). Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proceedings of the National Academy of Sciences103(5), 1528–1533.

    Google Scholar 

  • Spirig, T., Weiner, E. M., & Clubb, R. T. (2011). Sortase enzymes in Gram-positive bacteria. Molecular Microbiology, 82(5), 1044–1059.

    Article  CAS  Google Scholar 

  • von Tils, D., Blädel, I., Schmidt, M. A., & Heusipp, G. (2012). Type II secretion in Yersinia—a secretion system for pathogenicity and environmental fitness. Frontiers in Cellular and Infection Microbiology, 2, 160.

    Google Scholar 

  • Waksman, G., & Orlova, E. V. (2014). Structural organisation of the type IV secretion systems. Current Opinion in Microbiology, 17, 24–31.

    Article  CAS  Google Scholar 

  • Wells, T. J., & Henderson, I. R. (2013). Type 1 and 5 secretion systems and associated toxins—Chapter 16. In M.S. Donnenberg (Ed.), Escherichia coli (pp. 499–532). Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, R., Gupta, N. (2021). Protein Secretion. In: Fundamentals of Bacterial Physiology and Metabolism. Springer, Singapore. https://doi.org/10.1007/978-981-16-0723-3_8

Download citation

Publish with us

Policies and ethics