Skip to main content

Advertisement

Log in

Current Developments and Future Prospects for Plant-Made Biopharmaceuticals Against Rabies

  • Reviews
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Rabies is a prevalent health problem in developing countries. Although vaccines and immunoglobulin treatments are available, their cost and multiple-dose treatments restrict availability. During the last two decades, plants have served as a low-cost platform for biopharmaceuticals production and have been applied to fight against rabies during the last two decades. Herein, I provide a description of the state of the art in the development of plant-made pharmaceuticals against rabies and identify key prospects for the field in terms of novel strategies, immunogen design, and therapeutic antibodies production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. WHO. (2014). http://www.who.int/rabies/en/.

  2. Dodet, B., Tejiokem, M. C., Aguemon, A. R., & Bourhy, H. (2015). Human rabies deaths in Africa: Breaking the cycle of indifference. International Health, 7, 4–6.

    Article  Google Scholar 

  3. Hossain, M., Ahmed, K., Bulbul, T., Hossain, S., Rahman, A., Biswas, M. N., & Nishizono, A. (2012). Human rabies in rural Bangladesh. Epidemiology and Infection, 140(11), 1964–1971.

    Article  CAS  Google Scholar 

  4. Tenzin Dhand, N. K., Gyeltshen, T., Firestone, S., Zangmo, C., Dema, C., Gyeltshen, R., & Ward, M. P. (2011). Dog bites in humans and estimating human rabies mortality in rabies endemic areas of Bhutan. PLoS Neglected Tropical Diseases, 5(11), e1391.

    Article  Google Scholar 

  5. Ly, S., Buchy, P., Heng, N. Y., Ong, S., Chhor, N., Bourhy, H., & Vong, S. (2009). Rabies situation in Cambodia. PLoS Neglected Tropical Diseases, 3(9), e511.

    Article  Google Scholar 

  6. Sudarshan, M. K., Madhusudana, S. N., Mahendra, B. J., Rao, N. S., Ashwath Narayana, D. H., Abdul Rahman, S., et al. (2007). Assessing the burden of human rabies in India: Results of a national multi-center epidemiological survey. International Journal of Infectious Diseases, 11(1), 29–35.

    Article  CAS  Google Scholar 

  7. WHO. (2014). http://www.who.int/mediacentre/factsheets/fs099/en/.

  8. Johnson, N., Cunningham, A. F., & Fooks, A. R. (2010). The immune response to rabies virus infection and vaccination. Vaccine, 28(23), 3896–3901.

    Article  CAS  Google Scholar 

  9. Vidy, A., El Bougrini, J., Chelbi-Alix, M. K., & Blondel, D. (2007). The nucleocytoplasmic rabies virus P protein counteracts interferon signaling by inhibiting both nuclear accumulation and DNA binding of STAT1. Journal of Virology, 81, 4255–4263.

    Article  CAS  Google Scholar 

  10. WHO. (2007). Rabies vaccines. Weekly Epidemiological Record, 82, 425–435.

    Google Scholar 

  11. Manning, S. E., Rupprecht, C. E., Fishbein, D., Hanlon, C. A., Lumlertdacha, B., & Guerra, M. (2008). Human rabies prevention–United States, 2008: Recommendations of the Advisory Committee on Immunization Practices. MMWR Recommendations and reports, 57, 1–28.

    Google Scholar 

  12. Bakker, A. B., Python, C., Kissling, C. J., Pandya, P., Marissen, W. E., Brink, M. F., et al. (2008). First administration to humans of a monoclonal antibody cocktail against rabies virus: Safety, tolerability, and neutralizing activity. Vaccine, 26, 5922–5927.

    Article  CAS  Google Scholar 

  13. Ertl, H. C. (2009). Novel vaccines to human rabies. PLoS Neglected Tropical Diseases, 3(9), e515.

    Article  Google Scholar 

  14. Franka, R., Smith, T. G., Dyer, J. L., Wu, X., Niezgoda, M., & Rupprecht, C. E. (2013). Current and future tools for global canine rabies elimination. Antiviral Research, 100(1), 220–225.

    Article  CAS  Google Scholar 

  15. Coslett, D. G., Hollow, B. P., & Obijeski, J. K. (1980). The structural proteins of rabies virus and evidence for their synthesis from separate monocistronic RNA species. The Journal of General Virology, 49, 161–180.

    Article  CAS  Google Scholar 

  16. Finke, S., & Conzelmann, K. K. (2005). Replication strategies of rabies virus. Virus Research, 111, 120–131.

    Article  CAS  Google Scholar 

  17. Wiktor, T. J., Gyorgy, E., Schlumberger, D., Sokol, F., & Koprowski, H. (1973). Antigenic properties of rabies virus components. Journal of Immunology, 110, 269–276.

    CAS  Google Scholar 

  18. Smith, T. G., Wu, X., Franka, R., & Rupprecht, C. E. (2011). Design of future rabies biologics and antiviral drugs. Advances in Virus Research, 79, 345–363.

    Article  CAS  Google Scholar 

  19. Fooks, A. R., Banyard, A. C., Horton, D. L., Johnson, N., McElhinney, L. M., & Jackson, A. C. (2014). Current status of rabies and prospects for elimination. The Lancet, 384(9951), 1389–1399.

    Article  Google Scholar 

  20. Yang, D. K., Kim, H. H., Lee, K. W., & Song, J. Y. (2013). The present and future of rabies vaccine in animals. Clinical and Experimental Vaccine Research, 2(1), 19–25.

    Article  CAS  Google Scholar 

  21. Chakradhar, S. (2015). Biting back: Vaccine efforts redoubled as rabies deadline looms. Nature Medicine, 21(1), 8–10.

    Article  CAS  Google Scholar 

  22. Warrell, M. J. (2012). Current rabies vaccines and prophylaxis schedules: Preventing rabies before and after exposure. Travel Medicine and Infectious Disease, 10(1), 1–15.

    Article  CAS  Google Scholar 

  23. Rosales-Mendoza, S., & Salazar-González, J. A. (2014). Immunological aspects of using plant cells as delivery vehicles for oral vaccines. Expert Review of Vaccines, 13(6), 737–749.

    Article  CAS  Google Scholar 

  24. Yusibov, V., Streatfield, S. J., & Kushnir, N. (2011). Clinical development of plant-produced recombinant pharmaceuticals: Vaccines, antibodies and beyond. Human Vaccines, 7(3), 313–321.

    Article  CAS  Google Scholar 

  25. Hernández, M., Rosas, G., Cervantes, J., Fragoso, G., Rosales-Mendoza, S., & Sciutto, E. (2014). Transgenic plants: A 5-year update on oral antipathogen vaccine development. Expert Review of Vaccines, 13(12), 1523–1536.

    Article  Google Scholar 

  26. Lindh, I., Bråve, A., Hallengärd, D., Hadad, R., Kalbina, I., Strid, Å., & Andersson, S. (2014). Oral delivery of plant-derived HIV-1 p24 antigen in low doses shows a superior priming effect in mice compared to high doses. Vaccine, 32(20), 2288–2293.

    Article  CAS  Google Scholar 

  27. Mihaliak, C.A., Webb, S., Miller, T., Fanton, M., Kirk, D., Cardineau, G., et al. (2005). Development of plant cell produced vaccines for animal health applications. In Proceedings of the 108th annual meeting of the United States Animal Health Association (pp. 158–163). NC: Greensboro.

  28. Pastores, G. M., Petakov, M., & Giraldo, P. (2014). A Phase 3, multicenter, open-label, switchover trial to assess the safety and efficacy of taliglucerase alfa, a plant cell-expressed recombinant human glucocerebrosidase, in adult and pediatric patients with Gaucher disease previously treated with imiglucerase. Blood Cells, Molecules, and Diseases, 53(4), 253–260.

    Article  CAS  Google Scholar 

  29. Wycoff, K. L. (2005). Secretory IgA antibodies from plants. Current Pharmaceutical Design, 11, 2429–2437.

    Article  CAS  Google Scholar 

  30. Bock, R. (2015). Engineering plastid genomes: Methods, tools, and applications in basic research and biotechnology. Annual Review of Plant Biology, 29(66), 211–241.

    Article  Google Scholar 

  31. Salazar-González, J. A., Bañuelos-Hernández, B., & Rosales-Mendoza, S. (2015). Current status of viral expression systems in plants and perspectives for oral vaccines development. Plant Molecular Biology, 87(3), 203–217.

    Article  Google Scholar 

  32. Bock, R. (2014). Engineering chloroplasts for high-level foreign protein expression. Methods in Molecular Biology, 1132, 93–106.

    Article  CAS  Google Scholar 

  33. Peyret, H., & Lomonossoff, G. P. (2013). The pEAQ vector series: The easy and quick way to produce recombinant proteins in plants. Plant Molecular Biology, 83(1–2), 51–58.

    Article  CAS  Google Scholar 

  34. Rosenberg, Y., Sack, M., Montefiori, D., Forthal, D., Mao, L., Hernandez-Abanto, S., et al. (2013). Rapid high-level production of functional HIV broadly neutralizing monoclonal antibodies in transient plant expression systems. PLoS One, 8(3), e58724.

    Article  CAS  Google Scholar 

  35. McGarvey, P. B., Hammond, J., Dienelt, M. M., Hooper, D. C., Fu, Z. F., Dietzschold, B., et al. (1995). Expression of the rabies virus glycoprotein in transgenic tomatoes. Biotechnology, 13(13), 1484–1487.

    Article  CAS  Google Scholar 

  36. Ashraf, S., Singh, P. K., Yadav, D. K., Shahnawaz, M., Mishra, S., Sawant, S. V., & Tuli, R. (2005). High level expression of surface glycoprotein of rabies virus in tobacco leaves and its immunoprotective activity in mice. Journal of Biotechnology, 119(1), 1–14.

    Article  CAS  Google Scholar 

  37. Loza-Rubio, E., Rojas, E., Gómez, L., Olivera, M. T., & Gómez-Lim, M. A. (2008). Development of an edible rabies vaccine in maize using the Vnukovo strain. Developments in Biologicals (Basel), 131, 477–482.

    CAS  Google Scholar 

  38. Loza-Rubio, E., Rojas-Anaya, E., López, J., Olivera-Flores, M. T., Gómez-Lim, M., & Tapia-Pérez, G. (2012). Induction of a protective immune response to rabies virus in sheep after oral immunization with transgenic maize, expressing the rabies virus glycoprotein. Vaccine, 30(37), 5551–5556.

    Article  CAS  Google Scholar 

  39. Roy, S., Tyagi, A., Tiwari, S., Singh, A., Sawant, S. V., Singh, P. K., & Tuli, R. (2010). Rabies glycoprotein fused with B subunit of cholera toxin expressed in tobacco plants folds into biologically active pentameric protein. Protein Expression and Purification, 70(2), 184–190.

    Article  CAS  Google Scholar 

  40. George-Chandy, A., Eriksson, K., Lebens, M., Nordström, I., Schön, E., & Holmgren, J. (2001). Cholera toxin B subunit as a carrier molecule promotes antigen presentation and increases CD40 and CD86 expression on antigen-presenting cells. Infection and Immunity, 69, 5716–5725.

    Article  CAS  Google Scholar 

  41. Luci, C., Hervouet, C., Rousseau, D., Holmgren, J., Czerkinsky, C., & Anjuère, F. (2006). Dendritic cell-mediated induction of mucosal cytotoxic responses following intravaginal immunization with the nontoxic B subunit of cholera toxin. Journal of Immunology, 176, 2749–2757.

    Article  CAS  Google Scholar 

  42. Kwon, K. C., Verma, D., Singh, N. D., Herzog, R., & Daniell, H. (2013). Oral delivery of human biopharmaceuticals, autoantigens and vaccine antigens bioencapsulated in plant cells. Advanced Drug Delivery Reviews, 65(6), 782–799.

    Article  CAS  Google Scholar 

  43. Chilton, M. D., Tepfer, D. A., Petit, A., David, C., Casse-Delbart, F., & Tempé, J. (1982). Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature, 295, 432–434.

    Article  CAS  Google Scholar 

  44. Skarjinskaia, M., Ruby, K., Araujo, A., Taylor, K., Gopalasamy-Raju, V., Musiychuk, K., et al. (2013). Hairy roots as a vaccine production and delivery system. Advances in Biochemical Engineering/Biotechnology, 134, 115–134.

    Article  CAS  Google Scholar 

  45. Singh, A., Srivastava, S., Chouksey, A., Panwar, B. S., Verma, P. C., Roy, S., et al. (2015). Expression of rabies glycoprotein and ricin toxin B chain (RGP-RTB) fusion protein in tomato hairy roots: A step towards oral vaccination for rabies. Molecular Biotechnology, 57(4), 359–370.

    Article  CAS  Google Scholar 

  46. Lambert, J. M., Goldmacher, V. S., Collision, A. R., Nadler, L. M., & Blattler, W. A. (1991). An immunotoxin prepared with blocked ricin: A natural plant toxin adapted for therapeutic use. Cancer Research, 51, 6236–6242.

    CAS  Google Scholar 

  47. Falnes, P., & Sandvig, K. (2000). Penetration of protein toxins into cells. Current Opinion in Cell Biology, 12, 407–413.

    Article  CAS  Google Scholar 

  48. Chazaud, B., Muriel, M. P., Wantyghem, J., Aubery, M., & Decastel, M. (1995). Ricin toxicity and intracellular routing in tumoral HT-29 cells. Experimental Cell Research, 221, 214–220.

    Article  CAS  Google Scholar 

  49. Perea Arango, I., Loza Rubio, E., Rojas Anaya, E., Olivera Flores, T., Gonzalez de la Vara, L., & Gómez Lim, M. A. (2008). Expression of the rabies virus nucleoprotein in plants at high-levels and evaluation of immune responses in mice. Plant Cell Reports, 27(4), 677–685.

    Article  CAS  Google Scholar 

  50. Yusibov, V., Modelska, A., Steplewski, K., Agadjanyan, M., Weiner, D., Hooper, D. C., & Koprowski, H. (1997). Antigens produced in plants by infection with chimeric plant viruses immunize against rabies virus and HIV-1. Proceedings of the National Academy of Sciences of the United States of America, 94(11), 5784–5788.

    Article  CAS  Google Scholar 

  51. Modelska, A., Dietzschold, B., Sleysh, N., Fu, Z. F., Steplewski, K., Hooper, D. C., et al. (1998). Immunization against rabies with plant-derived antigen. Proceedings of the National Academy of Sciences of the United States of America, 95(5), 2481–2485.

    Article  CAS  Google Scholar 

  52. Yusibov, V., Hooper, D. C., Spitsin, S. V., Fleysh, N., Kean, R. B., Mikheeva, T., et al. (2002). Expression in plants and immunogenicity of plant virus-based experimental rabies vaccine. Vaccine, 20(25–26), 3155–3164.

    Article  CAS  Google Scholar 

  53. Hiatt, A., Cafferkey, R., & Bowdish, K. (1989). Production of antibodies in transgenic plants. Nature, 342, 76–78.

    Article  CAS  Google Scholar 

  54. Ko, K., Brodzik, R., & Steplewski, Z. (2009). Production of antibodies in plants: Approaches and perspectives. Current Topics in Microbiology and Immunology, 332, 55–78.

    CAS  Google Scholar 

  55. Virdi, V., & Depicker, A. (2013). Role of plant expression systems in antibody production for passive immunization. The International Journal of Developmental Biology, 57(6–8), 587–593.

    Article  CAS  Google Scholar 

  56. Lee, J. H., Park, D. Y., Lee, K. J., Kim, Y. K., So, Y. K., Ryu, J. S., et al. (2013). Intracellular reprogramming of expression, glycosylation, and function of a plant-derived antiviral therapeutic monoclonal antibody. PLoS One, 8(8), e68772.

    Article  CAS  Google Scholar 

  57. van Dolleweerd, C. J., Teh, A. Y., Banyard, A. C., Both, L., Lotter-Stark, H. C., Tsekoa, T., et al. (2014). Engineering, expression in transgenic plants and characterisation of E559, a rabies virus-neutralising monoclonal antibody. The Journal of Infectious Diseases, 210(2), 200–208.

    Article  Google Scholar 

  58. Both, L., van Dolleweerd, C., Wright, E., Banyard, A. C., Bulmer-Thomas, B., Selden, D., et al. (2013). Production, characterization, and antigen specificity of recombinant 62-71-3, a candidate monoclonal antibody for rabies prophylaxis in humans. FASEB Journal, 27(5), 2055–2065.

    Article  CAS  Google Scholar 

  59. Müller, T., Dietzschold, B., Ertl, H., Fooks, A. R., Freuling, C., Fehlner-Gardiner, C., et al. (2009). Development of a mouse monoclonal antibody cocktail for post-exposure rabies prophylaxis in humans. PLoS Neglected Tropical Diseases, 3(11), e542.

    Article  Google Scholar 

  60. WHO. (2014). http://www.who.int/rabies/control/en/.

  61. Rosales-Mendoza, S., Rubio-Infante, N., Govea-Alonso, D. O., & Moreno-Fierros, L. (2012). Current status and perspectives of plant-based candidate vaccines against the human immunodeficiency virus (HIV). Plant Cell Reports, 31(3), 495–511.

    Article  CAS  Google Scholar 

  62. Rybicki, E. P. (2014). Plant-based vaccines against viruses. Virology Journal, 11(1), 205.

    Article  Google Scholar 

  63. Yusibov, V., Kushnir, N., & Streatfield, S. J. (2014). Advances and challenges in the development and production of effective plant-based influenza vaccines. Expert Review of Vaccines, 9, 1–17.

    Google Scholar 

  64. Pniewski, T. (2012). Is an oral plant-based vaccine against hepatitis B virus possible? Current Pharmaceutical Biotechnology, 13(15), 2692–2704.

    Article  CAS  Google Scholar 

  65. Sarra, S., Oevering, P., Guidino, S., & Peters, D. (2004). Wind mediated spread of rice yellow mottle virus (RYMV) in irrigated rice crops. Plant Pathology, 53, 148–153.

    Article  Google Scholar 

  66. Jin, C., Altmann, F., Strasser, R., Mach, L., Schähs, M., Kunert, R., et al. (2008). A plant-derived human monoclonal antibody induces an anti-carbohydrate immune response in rabbits. Glycobiology, 18(3), 235–241.

    Article  CAS  Google Scholar 

  67. Strasser, R., Stadlmann, J., Schähs, M., Stiegler, G., Quendler, H., Mach, L., et al. (2008). Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. Plant Biotechnology Journal, 6(4), 392–402.

    Article  CAS  Google Scholar 

  68. Castilho, A., Gattinger, P., Grass, J., Jez, J., Pabst, M., Altmann, F., et al. (2011). N-glycosylation engineering of plants for the biosynthesis of glycoproteins with bisected and branched complex N-glycans. Glycobiology, 21(6), 813–823.

    Article  CAS  Google Scholar 

  69. Schähs, M., Strasser, R., Stadlmann, J., Kunert, R., Rademacher, T., & Steinkellner, H. (2007). Production of a monoclonal antibody in plants with a humanized N-glycosylation pattern. Plant Biotechnology Journal, 5(5), 657–663.

    Article  Google Scholar 

  70. Castilho, A., Neumann, L., Daskalova, S., Mason, H. S., Steinkellner, H., Altmann, F., & Strasser, R. (2012). Engineering of sialylated mucin-type O-glycosylation in plants. The Journal of Biological Chemistry, 287(43), 36518–36526.

    Article  CAS  Google Scholar 

  71. Orellana-Escobedo, L., Rosales-Mendoza, S., Romero-Maldonado, A., Parsons, J., Decker, E. L., Monreal-Escalante, E., et al. (2015). An Env-derived multi-epitope HIV chimeric protein produced in the moss Physcomitrella patens is immunogenic in mice. Plant Cell Reports, 34(3), 425–433.

    Article  CAS  Google Scholar 

  72. Rosales-Mendoza, S., Orellana-Escobedo, L., Romero-Maldonado, A., Decker, E. L., & Reski, R. (2014). The potential of Physcomitrella patens as a platform for the production of plant-based vaccines. Expert Review of Vaccines, 13(2), 203–212.

    Article  CAS  Google Scholar 

  73. Coll, J. M. (1995). The glycoprotein G of rhabdoviruses. Archives of Virology, 140(5), 827–851.

    Article  CAS  Google Scholar 

  74. Otvos, L, Jr, Urge, L., Xiang, Z. Q., Krivulka, G. R., Nagy, L., Szendrei, G. I., & Ertl, H. C. (1994). Glycosylation of synthetic T helper cell epitopic peptides influences their antigenic potency and conformation in a sugar location-specific manner. Biochimica et Biophysica Acta, 1224(1), 68–76.

    Article  CAS  Google Scholar 

  75. Sakamoto, S., Ide, T., Tokiyoshi, S., Nakao, J., Hamada, F., Yamamoto, M., et al. (1999). Studies on the structures and antigenic properties of rabies virus glycoprotein analogues produced in yeast cells. Vaccine, 17, 205–218.

    Article  CAS  Google Scholar 

  76. Prehaud, C., Takehara, K., Flamand, A., & Bishop, D. H. (1989). Immunogenic and protective properties of rabies virus glycoprotein expressed by baculovirus vectors. Virology, 173, 390–399.

    Article  CAS  Google Scholar 

  77. Kang, H., Qi, Y., Wang, H., Zheng, X., Gao, Y., Li, N., et al. (2015). Chimeric rabies virus-like particles containing membrane-anchored GM-CSF enhances the immune response against rabies virus. Viruses, 7(3), 1134–1152.

    Article  CAS  Google Scholar 

  78. Pepponi, I., Diogo, G. R., Stylianou, E., et al. (2014). Plant-derived recombinant immune complexes as self-adjuvanting TB immunogens for mucosal boosting of BCG. Plant Biotechnology Journal, 12(7), 840–850.

    Article  CAS  Google Scholar 

  79. Werner, S., Breus, O., Symonenko, Y., Marillonnet, S., & Gleba, Y. (2011). High-level recombinant protein expression in transgenic plants by using a double-inducible viral vector. Proceedings of the National Academy of Sciences of the United States of America, 108(34), 14061–14066.

    Article  CAS  Google Scholar 

  80. Marillonnet, S., Giritch, A., Gils, M., Kandzia, R., Klimyuk, V., & Gleba, Y. (2004). In planta engineering of viral RNA replicons: Efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proceedings of the National Academy of Sciences of the United States of America, 101(18), 6852–6857.

    Article  CAS  Google Scholar 

  81. Yusibov, V., Kushnir, N., & Streatfield, S. J. (2015). Advances and challenges in the development and production of effective plant-based influenza vaccines. Expert Review of Vaccines, 14(4), 519–535.

    Article  CAS  Google Scholar 

  82. Lakshmi, P. S., Verma, D., Yang, X., Lloyd, B., & Daniell, H. (2013). Low cost tuberculosis vaccine antigens in capsules: Expression in chloroplasts, bio-encapsulation, stability and functional evaluation in vitro. PLoS One, 8(1), e54708.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Rosales-Mendoza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosales-Mendoza, S. Current Developments and Future Prospects for Plant-Made Biopharmaceuticals Against Rabies. Mol Biotechnol 57, 869–879 (2015). https://doi.org/10.1007/s12033-015-9880-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-015-9880-3

Keywords

Navigation