Skip to main content

Advertisement

Log in

Application of Chitosan-Based Nanocarriers in Tumor-Targeted Drug Delivery

  • Reviews
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Cancer is one of the major malignant diseases in the world. Current anti tumor agents are restricted during the chemotherapy due to their poor solubility in aqueous media, multidrug resistance problems, cytotoxicity, and serious side effects to healthy tissues. Development of targeted drug nanocarriers would enhance the undesirable effects of anticancer drugs and also selectively deliver them to cancerous tissues. Variety of nanocarriers such as micelles, polymeric nanoparticles, liposomes nanogels, dendrimers, and carbon nanotubes have been used for targeted delivery of anticancer agents. These nanocarriers transfer loaded drugs to desired sites through passive or active efficacy mechanisms. Chitosan and its derivatives, due to their unique properties such as hydrophilicity, biocompatibility, and biodegradability, have attracted attention to be used in nanocarriers. Grafting cancer-specific ligands onto the Chitosan nanoparticles, which leads to ligand–receptor interactions, has been successfully developed as active targeting. Chitosan-conjugated components also respond to external or internal physical and chemical stimulus in targeted tumors that is called environment triggers. In this study, mechanisms of targeted tumor deliveries via nanocarriers were explained; specifically, chitosan-based nanocarriers in tumor-targeting drug delivery were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sarkar, F. H., Banerjee, S., & Li, Y. (2007). Pancreatic cancer: Pathogenesis, prevention and treatment. Toxicology and Applied Pharmacology, 224, 326–336.

    CAS  Google Scholar 

  2. Byrne, J. D., Betancourt, T., & Brannon-Peppas, L. (2008). Active targeting schemes for nanoparticle systems in cancer therapeutics. Advanced Drug Delivery Reviews, 60, 1615–1626.

    CAS  Google Scholar 

  3. Manchun, S., Dass, C. R., & Sriamornsak, P. (2012). Targeted therapy for cancer using pH-responsive nanocarrier systems. Life Sciences, 90, 381–387.

    CAS  Google Scholar 

  4. Patel, N. R., Pattni, B. S., Abouzeid, A. H., & Torchilin, V. P. (2013). Nanopreparations to overcome multidrug resistance in cancer. Advanced Drug Delivery Reviews, 65, 1748–1762.

    CAS  Google Scholar 

  5. Chan, A., Orme, R. P., Fricker, R. A., & Roach, P. (2013). Remote and local control of stimuli responsive materials for therapeutic applications. Advanced Drug Delivery Reviews, 65, 497–514.

    CAS  Google Scholar 

  6. Pulkkinen, M., Pikkarainen, J., Wirth, T., Tarvainen, T., Haapa-aho, V., Korhonen, H., et al. (2008). Three-step tumor targeting of paclitaxel using biotinylated PLA-PEG nanoparticles and avidin–biotin technology: Formulation development and in vitro anticancer activity. European Journal of Pharmaceutics and Biopharmaceutics, 70, 66–74.

    CAS  Google Scholar 

  7. Sanoj Rejinold, N., Sreerekha, P. R., Chennazhi, K. P., Nair, S. V., & Jayakumar, R. (2011). Biocompatible, biodegradable and thermo-sensitive chitosan-g-poly (N-isopropylacrylamide) nanocarrier for curcumin drug delivery. International Journal of Biological Macromolecules, 49, 161–172.

    CAS  Google Scholar 

  8. Lakshmanan, V.-K., Snima, K. S., Bumgardner, J., Nair, S., & Jayakumar, R. (2011). Chitosan-based nanoparticles in cancer therapy. In R. Jayakumar, M. Prabaharan, & R. A. A. Muzzarelli (Eds.), Chitosan for biomaterials, vol. 243: Advances in polymer science (pp. 55–91). Berlin: Springer.

    Google Scholar 

  9. Liu, Z., Jiao, Y., Wang, Y., Zhou, C., & Zhang, Z. (2008). Polysaccharides-based nanoparticles as drug delivery systems. Advanced Drug Delivery Reviews, 60, 1650–1662.

    CAS  Google Scholar 

  10. Torchilin, V. P. (2004). Targeted polymeric micelles for delivery of poorly soluble drugs. CMLS. Cellular and Molecular Life Sciences, 61, 2549–2559.

    CAS  Google Scholar 

  11. Park, J. H., Saravanakumar, G., Kim, K., & Kwon, I. C. (2010). Targeted delivery of low molecular drugs using chitosan and its derivatives. Advanced Drug Delivery Reviews, 62, 28–41.

    CAS  Google Scholar 

  12. Thanki, K., Gangwal, R. P., Sangamwar, A. T., & Jain, S. (2013). Oral delivery of anticancer drugs: Challenges and opportunities. Journal of Controlled Release, 170, 15–40.

    CAS  Google Scholar 

  13. Wang, M. D., Shin, D. M., Simons, J. W., & Nie, S. (2007). Nanotechnology for targeted cancer therapy. Expert Review of Anticancer Therapy 7, 833–837.

    CAS  Google Scholar 

  14. Jabr-Milane, L. S., van Vlerken, L. E., Yadav, S., & Amiji, M. M. (2008). Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treatment Reviews, 34, 592–602.

    CAS  Google Scholar 

  15. Venkatesan, P., Puvvada, N., Dash, R., Prashanth Kumar, B. N., Sarkar, D., Azab, B., et al. (2011). The potential of celecoxib-loaded hydroxyapatite-chitosan nanocomposite for the treatment of colon cancer. Biomaterials, 32, 3794–3806.

    CAS  Google Scholar 

  16. He, M., Zhao, Z., Yin, L., Tang, C., & Yin, C. (2009). Hyaluronic acid coated poly(butyl cyanoacrylate) nanoparticles as anticancer drug carriers. International Journal of Pharmaceutics, 373, 165–173.

    CAS  Google Scholar 

  17. Jee, J.-P., Na, J. H., Lee, S., Kim, S. H., Choi, K., Yeo, Y., et al. (2012). Cancer targeting strategies in nanomedicine: Design and application of chitosan nanoparticles. Current Opinion in Solid State and Materials Science, 16, 333–342.

    CAS  Google Scholar 

  18. Bates, D. O., Hillman, N. J., Williams, B., Neal, C. R., & Pocock, T. M. (2002). Regulation of microvascular permeability by vascular endothelial growth factors*. Journal of Anatomy, 200, 581–597.

    CAS  Google Scholar 

  19. Bertrand, N., Wu, J., Xu, X., Kamaly, N., & Farokhzad, O. C. (2014). Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Advanced Drug Delivery Reviews, 66, 2–25.

    CAS  Google Scholar 

  20. Brannon-Peppas, L., & Blanchette, J. O. (2004). Nanoparticle and targeted systems for cancer therapy. Advanced Drug Delivery Reviews, 56, 1649–1659.

    CAS  Google Scholar 

  21. Torchilin, V. (2011). Tumor delivery of macromolecular drugs based on the EPR effect. Advanced Drug Delivery Reviews, 63, 131–135.

    CAS  Google Scholar 

  22. Koo, H., Min, K. H., Lee, S. C., Park, J. H., Park, K., Jeong, S. Y., et al. (2013). Enhanced drug-loading and therapeutic efficacy of hydrotropic oligomer-conjugated glycol chitosan nanoparticles for tumor-targeted paclitaxel delivery. Journal of Controlled Release, 172, 823–831.

    CAS  Google Scholar 

  23. Yin, Q., Shen, J., Zhang, Z., Yu, H., & Li, Y. (2013). Reversal of multidrug resistance by stimuli-responsive drug delivery systems for therapy of tumor. Advanced Drug Delivery Reviews, 65, 1699–1715.

    CAS  Google Scholar 

  24. Livney, Y. D., & Assaraf, Y. G. (2013). Rationally designed nanovehicles to overcome cancer chemoresistance. Advanced Drug Delivery Reviews, 65, 1716–1730.

    CAS  Google Scholar 

  25. Jin, Y.-H., Hu, H.-Y., Qiao, M.-X., Zhu, J., Qi, J.-W., Hu, C.-J., et al. (2012). pH-Sensitive chitosan-derived nanoparticles as doxorubicin carriers for effective anti-tumor activity: preparation and in vitro evaluation. Colloids and Surfaces B, 94, 184–191.

    CAS  Google Scholar 

  26. Mohamed, S., Zeino, M., Kadioglu, O., Volm, M., & Efferth, T. (2014). Overcoming of P-glycoprotein-mediated multidrug resistance of tumors in vivo by drug combinations. Synergy, 1, 44–58.

    Google Scholar 

  27. Shapira, A., Livney, Y. D., Broxterman, H. J., & Assaraf, Y. G. (2011). Nanomedicine for targeted cancer therapy: Towards the overcoming of drug resistance. Drug Resistance Updates, 14, 150–163.

    CAS  Google Scholar 

  28. Garbuzenko, O. B., Saad, M., Pozharov, V. P., Reuhl, K. R., Mainelis, G., & Minko, T. (2010). Inhibition of lung tumor growth by complex pulmonary delivery of drugs with oligonucleotides as suppressors of cellular resistance. In Proceedings of the National Academy of Sciences.

  29. Oh, N. M., Oh, K. T., Baik, H. J., Lee, B. R., Lee, A. H., Youn, Y. S., et al. (2010). A self-organized 3-diethylaminopropyl-bearing glycol chitosan nanogel for tumor acidic pH targeting: In vitro evaluation. Colloids and Surfaces B, 78, 120–126.

    CAS  Google Scholar 

  30. Saraswathy, M., & Gong, S. (2013). Different strategies to overcome multidrug resistance in cancer. Biotechnology Advances, 13, 1397–1407.

    Google Scholar 

  31. Palakurthi, S., Yellepeddi, V. K., & Vangara, K. K. (2012). Recent trends in cancer drug resistance rever-sal strategies using nanoparticles. Expert opinion on drug delivery, 9, 287–301.

    CAS  Google Scholar 

  32. Choi, K. Y., Chung, H., Min, K. H., Yoon, H. Y., Kim, K., Park, J. H., et al. (2010). Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials, 31, 106–114.

    CAS  Google Scholar 

  33. Lee, S. J., Koo, H., Jeong, H., Huh, M. S., Choi, Y., Jeong, S. Y., et al. (2011). Comparative study of photosensitizer loaded and conjugated glycol chitosan nanoparticles for cancer therapy. Journal of Controlled Release, 152, 21–29.

    CAS  Google Scholar 

  34. Fahr, A., & Liu, X. (2007). Drug delivery strategies for poorly water-soluble drugs. Expert opinion on drug delivery, 4, 403–416.

    CAS  Google Scholar 

  35. Huo, M., Zhang, Y., Zhou, J., Zou, A., Yu, D., Wu, Y., et al. (2010). Synthesis and characterization of low-toxic amphiphilic chitosan derivatives and their application as micelle carrier for antitumor drug. International Journal of Pharmaceutics, 394, 162–173.

    CAS  Google Scholar 

  36. Fan, L., Li, F., Zhang, H., Wang, Y., Cheng, C., Li, X., et al. (2010). Co-delivery of PDTC and doxorubicin by multifunctional micellar nanoparticles to achieve active targeted drug delivery and overcome multidrug resistance. Biomaterials, 31, 5634–5642.

    CAS  Google Scholar 

  37. Min, K. H., Park, K., Kim, Y.-S., Bae, S. M., Lee, S., Jo, H. G., et al. (2008). Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. Journal of Controlled Release, 127, 208–218.

    CAS  Google Scholar 

  38. Gao, J., Ming, J., He, B., Fan, Y., Gu, Z., & Zhang, X. (2008). Preparation and characterization of novel polymeric micelles for 9-nitro-20(S)-camptothecin delivery. European Journal of Pharmaceutical Sciences, 34, 85–93.

    CAS  Google Scholar 

  39. Ye, Y.-Q., Chen, F.-Y., Wu, Q.-A., Hu, F.-Q., Du, Y.-Z., Yuan, H., et al. (2009). Enhanced cytotoxicity of core modified chitosan based polymeric micelles for doxorubicin delivery. Journal of Pharmaceutical Sciences, 98, 704–712.

    CAS  Google Scholar 

  40. Torchilin, V. P. (2000). Drug targeting. European Journal of Pharmaceutical Sciences, 11(Supplement 2), S81–S91.

    CAS  Google Scholar 

  41. Ranganathan, R., Madanmohan, S., Kesavan, A., Baskar, G., Krishnamoorthy, Y. R., Santosham, R., et al. (2012). Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications. International Journal of Nanomedicine, 7, e1060.

    Google Scholar 

  42. Altintas, I., Kok, R. J., & Schiffelers, R. M. (2012). Targeting epidermal growth factor receptor in tumors: From conventional monoclonal antibodies via heavy chain-only antibodies to nanobodies. European Journal of Pharmaceutical Sciences, 45, 399–407.

    CAS  Google Scholar 

  43. Torchilin, V. (2009). Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. European Journal of Pharmaceutics and Biopharmaceutics, 71, 431–444.

    CAS  Google Scholar 

  44. Sun, Q., Radosz, M., & Shen, Y. (2012). Challenges in design of translational nanocarriers. Journal of Controlled Release, 164, 156–169.

    CAS  Google Scholar 

  45. Florence, A. T. (2007). Pharmaceutical nanotechnology: More than size: Ten topics for research. International Journal of Pharmaceutics, 339, 1–2.

    CAS  Google Scholar 

  46. Kong, M., Park, H., Cheng, X., & Chen, X. (2013). Spatial–temporal event adaptive characteristics of nanocarrier drug delivery in cancer therapy. Journal of Controlled Release, 172, 281–291.

    CAS  Google Scholar 

  47. Kwon, I. K., Lee, S. C., Han, B., & Park, K. (2012). Analysis on the current status of targeted drug delivery to tumors. Journal of Controlled Release, 164, 108–114.

    CAS  Google Scholar 

  48. Yameen, B., Choi, W., Vilos, C., Swami, A., Shi, J., & Farokhzad, O. (2014). Insight into nanoparticle cellular uptake and intracellular targeting. Controlled Release, 190, 485–499.

    CAS  Google Scholar 

  49. Bae, Y. H., & Park, K. (2011). Targeted drug delivery to tumors: Myths, reality and possibility. Journal of Controlled Release, 153, 198–205.

    CAS  Google Scholar 

  50. Maeda, H., Bharate, G. Y., & Daruwalla, J. (2009). Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. European Journal of Pharmaceutics and Biopharmaceutics, 71, 409–419.

    CAS  Google Scholar 

  51. Hudson, D., & Margaritis, A. (2013). Biopolymer nanoparticle production for controlled release of biopharmaceuticals. Critical Reviews in Biotechnology, 0, 1–19.

    CAS  Google Scholar 

  52. Kumari, A., Yadav, S. K., & Yadav, S. C. (2010). Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B, 75, 1–18.

    CAS  Google Scholar 

  53. Duceppe, N., & Tabrizian, M. (2010). Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery. Expert opinion on drug delivery, 7, 1191–1207.

    CAS  Google Scholar 

  54. Rai, P., Mallidi, S., Zheng, X., Rahmanzadeh, R., Mir, Y., Elrington, S., et al. (2010). Development and applications of photo-triggered theranostic agents. Advanced Drug Delivery Reviews, 62, 1094–1124.

    CAS  Google Scholar 

  55. Gulbake, A., & Jain, S. K. (2012). Chitosan: A potential polymer for colon-specific drug delivery system. Expert opinion on drug delivery, 9, 713–729.

    CAS  Google Scholar 

  56. Ashkenazi, A. (2002). Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nature Reviews Cancer, 2, 420–430.

    CAS  Google Scholar 

  57. Riva, R., Ragelle, H., Rieux, A., Duhem, N., Jérôme, C., & Préat, V. (2011). Chitosan and chitosan derivatives in drug delivery and tissue engineering. In R. Jayakumar, M. Prabaharan, & R. A. A. Muzzarelli (Eds.), Chitosan for biomaterials II, vol. 244: Advances in polymer science (pp. 19–44). Berlin: Springer.

    Google Scholar 

  58. Liu, J., Li, H., Jiang, X., Zhang, C., & Ping, Q. (2010). Novel pH-sensitive chitosan-derived micelles loaded with paclitaxel. Carbohydrate Polymers, 82, 432–439.

    CAS  Google Scholar 

  59. Nogueira, D. R., Tavano, L., Mitjans, M., Pérez, L., Infante, M. R., & Vinardell, M. P. (2013). In vitro antitumor activity of methotrexate via pH-sensitive chitosan nanoparticles. Biomaterials, 34, 2758–2772.

    CAS  Google Scholar 

  60. Derakhshandeh, K., & Fathi, S. (2012). Role of chitosan nanoparticles in the oral absorption of Gemcitabine. International Journal of Pharmaceutics, 437, 172–177.

    CAS  Google Scholar 

  61. Garg, N. K., Dwivedi, P., Campbell, C., & Tyagi, R. K. (2012). Site specific/targeted delivery of gemcitabine through anisamide anchored chitosan/poly ethylene glycol nanoparticles: An improved understanding of lung cancer therapeutic intervention. European Journal of Pharmaceutical Sciences, 47, 1006–1014.

    CAS  Google Scholar 

  62. Arya, G., Vandana, M., Acharya, S., & Sahoo, S. K. (2011). Enhanced antiproliferative activity of Herceptin (HER2)-conjugated gemcitabine-loaded chitosan nanoparticle in pancreatic cancer therapy. Nanomedicine, 7, 859–870.

    CAS  Google Scholar 

  63. Anitha, A., Maya, S., Deepa, N., Chennazhi, K. P., Nair, S. V., Tamura, H., et al. (2011). Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells. Carbohydrate Polymers, 83, 452–461.

    CAS  Google Scholar 

  64. Zhang, C., Qu, G., Sun, Y., Yang, T., Yao, Z., Shen, W., et al. (2008). Biological evaluation of N-octyl-O-sulfate chitosan as a new nano-carrier of intravenous drugs. European Journal of Pharmaceutical Sciences, 33, 415–423.

    CAS  Google Scholar 

  65. Zhang, C., Qineng, P., & Zhang, H. (2004). Self-assembly and characterization of paclitaxel-loaded N-octyl-O-sulfate chitosan micellar system. Colloids and Surfaces B, 39, 69–75.

    CAS  Google Scholar 

  66. Deckert, P. (2009). Current constructs and targets in clinical development for antibody-based cancer therapy. Current Drug Targets, 10, 158–175.

    CAS  Google Scholar 

  67. Malmiri, H. J., Jahanian, M. A. G., & Berenjian, A. (2012). Potential applications of chitosan nanoparticles as novel support in enzyme immobilization. American Journal of Biochemistry & Biotechnology, 8, 203–219.

    CAS  Google Scholar 

  68. Folkes, L. K., & Wardman, P. (2003). Enhancing the efficacy of photodynamic cancer therapy by radicals from plant auxin (indole-3-acetic acid). Cancer Research, 63, 776–779.

    CAS  Google Scholar 

  69. Yuan, Q., Venkatasubramanian, R., Hein, S., & Misra, R. D. K. (2008). A stimulus-responsive magnetic nanoparticle drug carrier: Magnetite encapsulated by chitosan-grafted-copolymer. Acta Biomaterialia, 4, 1024–1037.

    CAS  Google Scholar 

  70. Razmi, M., Divsalar, A., Saboury, A. A., Izadi, Z., Haertlé, T., & Mansuri-Torshizi, H. (2013). Beta-casein and its complexes with chitosan as nanovehicles for delivery of a platinum anticancer drug. Colloids and Surfaces B, 112, 362–367.

    CAS  Google Scholar 

  71. Arias, J. L., López-Viota, M., Sáez-Fernández, E., Ruiz, M. A., & Delgado, Á. V. (2011). Engineering of an antitumor (core/shell) magnetic nanoformulation based on the chemotherapy agent ftorafur. Colloids and Surfaces A, 384, 157–163.

    CAS  Google Scholar 

  72. Unsoy, G., Yalcin, S., Khodadust, R., Mutlu, P., Onguru, O., & Gunduz, U. (2014). Chitosan magnetic nanoparticles for pH responsive Bortezomib release in cancer therapy. Biomedicine & Pharmacotherapy. doi:10.1016/j.biopha.2014.04.003.

  73. Feng, C., Wang, Z., Jiang, C., Kong, M., Zhou, X., Li, Y., et al. (2013). Chitosan/o-carboxymethyl chitosan nanoparticles for efficient and safe oral anticancer drug delivery: In vitro and in vivo evaluation. International Journal of Pharmaceutics, 457, 158–167.

    CAS  Google Scholar 

  74. Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12, 991–1003.

    CAS  Google Scholar 

  75. Zhou, N., Zan, X., Wang, Z., Wu, H., Yin, D., Liao, C., et al. (2013). Galactosylated chitosan–polycaprolactone nanoparticles for hepatocyte-targeted delivery of curcumin. Carbohydrate Polymers, 94, 420–429.

    CAS  Google Scholar 

  76. Huo, M., Zou, A., Yao, C., Zhang, Y., Zhou, J., Wang, J., et al. (2012). Somatostatin receptor-mediated tumor-targeting drug delivery using octreotide-PEG-deoxycholic acid conjugate-modified N-deoxycholic acid-O, N-hydroxyethylation chitosan micelles. Biomaterials, 33, 6393–6407.

    CAS  Google Scholar 

  77. Park, E. K., Lee, S. B., & Lee, Y. M. (2005). Preparation and characterization of methoxy poly(ethylene glycol)/poly(ε-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials, 26, 1053–1061.

    CAS  Google Scholar 

  78. Chan, P., Kurisawa, M., Chung, J. E., & Yang, Y.-Y. (2007). Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery. Biomaterials, 28, 540–549.

    CAS  Google Scholar 

  79. Yang, S.-J., Lin, F.-H., Tsai, K.-C., Wei, M.-F., Tsai, H.-M., Wong, J.-M., et al. (2010). Folic acid-conjugated chitosan nanoparticles enhanced protoporphyrin IX accumulation in colorectal cancer cells. Bioconjugate Chemistry, 21, 679–689.

    CAS  Google Scholar 

  80. Guillermet-Guibert, J., Lahlou, H., Cordelier, P., Bousquet, C., Pyronnet, S., & Susini, C. (2005). Physiology of somatostatin receptors. Journal of Endocrinological Investigation, 28, 5.

    CAS  Google Scholar 

  81. Mariniello, B., Finco, I., Sartorato, P., Patalano, A., Iacobone, M., Guzzardo, V., et al. (2011). Somatostatin receptor expression in adrenocortical tumors and effect of a new somatostatin analog SOM230 on hormone secretion in vitro and in ex vivo adrenal cells. Journal of Endocrinological Investigation, 34, e131–e138.

    CAS  Google Scholar 

  82. Guan, M., Zhou, Y., Zhu, Q.-L., Liu, Y., Bei, Y.-Y., Zhang, X.-N., et al. (2012). N-trimethyl chitosan nanoparticle-encapsulated lactosyl-norcantharidin for liver cancer therapy with high targeting efficacy. Nanomedicine, 8, 1172–1181.

    CAS  Google Scholar 

  83. Yang, K., Kong, M., Wei, Y., Liu, Y., Cheng, X., Li, J., et al. (2013). Folate-modified–chitosan-coated liposomes for tumor-targeted drug delivery. Journal of Materials Science, 48, 1717–1728.

    CAS  Google Scholar 

  84. Fukumura, D., & Jain, R. K. (2007). Tumor microvasculature and microenvironment: Targets for anti-angiogenesis and normalization. Microvascular Research, 74, 72–84.

    CAS  Google Scholar 

  85. Pouyssegur, J., Dayan, F., & Mazure, N. M. (2006). Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature, 441, 437–443.

    CAS  Google Scholar 

  86. Deng, Z., Zhen, Z., Hu, X., Wu, S., Xu, Z., & Chu, P. K. (2011). Hollow chitosan–silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy. Biomaterials, 32, 4976–4986.

    CAS  Google Scholar 

  87. Wu, W., Shen, J., Banerjee, P., & Zhou, S. (2010). Chitosan-based responsive hybrid nanogels for integration of optical pH-sensing, tumor cell imaging and controlled drug delivery. Biomaterials, 31, 8371–8381.

    CAS  Google Scholar 

  88. Sun, G., Zhang, X.-Z., & Chu, C.-C. (2007). Formulation and characterization of chitosan-based hydrogel films having both temperature and pH sensitivity. Journal of Materials Science. Materials in Medicine, 18, 1563–1577.

    CAS  Google Scholar 

  89. Danhier, F., Feron, O., & Préat, V. (2010). To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. Journal of Controlled Release, 148, 135–146.

    CAS  Google Scholar 

  90. Alarcon, C.d. l. H., Pennadam, S., & Alexander, C. (2005). Stimuli responsive polymers for biomedical applications. Chemical Society Reviews, 34, 276–285.

    CAS  Google Scholar 

  91. Twaites, B., de las Heras Alarcon, C., & Alexander, C. (2005). Synthetic polymers as drugs and therapeutics. Journal of Materials Chemistry, 15, 441–455.

    CAS  Google Scholar 

  92. Rejinold, N. S., Chennazhi, K. P., Nair, S. V., Tamura, H., & Jayakumar, R. (2011). Biodegradable and thermo-sensitive chitosan-g-poly(N-vinylcaprolactam) nanoparticles as a 5-fluorouracil carrier. Carbohydrate Polymers, 83, 776–786.

    CAS  Google Scholar 

  93. Hilger, I., Hiergeist, R., Hergt, R., Winnefeld, K., Schubert, H., & Kaiser, W. A. (2002). Thermal ablation of tumors using magnetic nanoparticles: an in vivo feasibility study. Investigative Radiology, 37, 580–586.

    CAS  Google Scholar 

  94. Pradhan, P., Giri, J., Rieken, F., Koch, C., Mykhaylyk, O., Döblinger, M., et al. (2010). Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. Journal of Controlled Release, 142, 108–121.

    CAS  Google Scholar 

  95. Hassan, E. E., & Gallo, J. M. (1993). Targeting anticancer drugs to the brain. I: Enhanced brain delivery of oxantrazole following administration in magnetic cationic microspheres. Journal of Drug Targeting, 1, 7–14.

    CAS  Google Scholar 

  96. Klostergaard, J., & Seeney, C. E. (2012). Magnetic nanovectors for drug delivery. Maturitas, 73, 33–44.

    CAS  Google Scholar 

  97. Lee, S. J., Koo, H., Lee, D.-E., Min, S., Lee, S., Chen, X., et al. (2011). Tumor-homing photosensitizer-conjugated glycol chitosan nanoparticles for synchronous photodynamic imaging and therapy based on cellular on/off system. Biomaterials, 32, 4021–4029.

    CAS  Google Scholar 

  98. Oh, I.-H., Min, H. S., Li, L., Tran, T. H., Lee, Y.-K., Kwon, I. C., et al. (2013). Cancer cell-specific photoactivity of pheophorbide a–glycol chitosan nanoparticles for photodynamic therapy in tumor-bearing mice. Biomaterials, 34, 6454–6463.

    CAS  Google Scholar 

  99. Goodwin, A. P., Mynar, J. L., Ma, Y., Fleming, G. R., & Fréchet, J. M. J. (2005). Synthetic micelle sensitive to IR light via a two-photon process. Journal of the American Chemical Society, 127, 9952–9953.

    CAS  Google Scholar 

  100. Jiang, J., Tong, X., Morris, D., & Zhao, Y. (2006). Toward photocontrolled release using light-dissociable block copolymer micelles. Macromolecules, 39, 4633–4640.

    CAS  Google Scholar 

  101. Chin, W. W. L., Heng, P. W. S., Thong, P. S. P., Bhuvaneswari, R., Hirt, W., Kuenzel, S., et al. (2008). Improved formulation of photosensitizer chlorin e6 polyvinylpyrrolidone for fluorescence diagnostic imaging and photodynamic therapy of human cancer. European Journal of Pharmaceutics and Biopharmaceutics, 69, 1083–1093.

    CAS  Google Scholar 

  102. Lovell, J. F., Chen, J., Jarvi, M. T., Cao, W.-G., Allen, A. D., Liu, Y., et al. (2009). FRET quenching of photosensitizer singlet oxygen generation. The Journal of Physical Chemistry B, 113, 3203–3211.

    CAS  Google Scholar 

  103. Zhang, D., Sun, P., Li, P., Xue, A., Zhang, X., Zhang, H., et al. (2013). A magnetic chitosan hydrogel for sustained and prolonged delivery of Bacillus Calmette–Guérin in the treatment of bladder cancer. Biomaterials, 34, 10258–10266.

    CAS  Google Scholar 

  104. Chang, Y.-C., Shieh, D.-B., Chang, C.-H., & Chen, D.-H. (2005). Conjugation of monodisperse chitosan-bound magnetic nanocarrier with epirubicin for targeted cancer therapy. Journal of Biomedical Nanotechnology, 1, 196–201.

    CAS  Google Scholar 

  105. Rajan, M., Raj, V., Al-Arfaj, A. A., & Murugan, A. M. (2013). Hyaluronidase enzyme core-5-fluorouracil-loaded chitosan-PEG-gelatin polymer nanocomposites as targeted and controlled drug delivery vehicles. International Journal of Pharmaceutics, 453, 514–522.

    CAS  Google Scholar 

  106. Puga, A. M., Lima, A. C., Mano, J. F., Concheiro, A., & Alvarez-Lorenzo, C. (2013). Pectin-coated chitosan microgels crosslinked on superhydrophobic surfaces for 5-fluorouracil encapsulation. Carbohydrate Polymers, 98, 331–340.

    CAS  Google Scholar 

  107. Vega-Villa, K. R., Takemoto, J. K., Yáñez, J. A., Remsberg, C. M., Forrest, M. L., & Davies, N. M. (2008). Clinical toxicities of nanocarrier systems. Advanced Drug Delivery Reviews, 60, 929–938.

    CAS  Google Scholar 

  108. Gupta, A. K., & Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26, 3995–4021.

    CAS  Google Scholar 

  109. Jokerst, J. V., Lobovkina, T., Zare, R. N., & Gambhir, S. S. (2011). Nanoparticle PEGylation for imaging and therapy. Nanomedicine, 6, 715–728.

    CAS  Google Scholar 

  110. Mebius, R. E., & Kraal, G. (2005). Structure and function of the spleen. Nature Reviews Immunology, 5, 606–616.

    CAS  Google Scholar 

  111. Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., & Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2, 751–760.

    CAS  Google Scholar 

  112. Berenjian, A., Ghasemi, M. R., & Zarghi, A. (2011). Preparation of barium sulfate nanoparticles using semi-batch precipitation. Asian Journal of Chemistry, 23, 491–494.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aydin Berenjian or Hoda Jafarizadeh-Malmiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaz-Jahanian, M.A., Abbaspour-Aghdam, F., Anarjan, N. et al. Application of Chitosan-Based Nanocarriers in Tumor-Targeted Drug Delivery. Mol Biotechnol 57, 201–218 (2015). https://doi.org/10.1007/s12033-014-9816-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9816-3

Keywords

Navigation