Skip to main content

Recent Advances in Chitosan-Based Systems for Delivery of Anticancer Drugs

  • Chapter
  • First Online:
Functional Chitosan
  • 819 Accesses

Abstract

Problems in transporting drug molecules to tumor sites in required dose or constitution lead to low efficacy and significant side effects. Shielding the drug molecules in micelles, liposomes, or nanoparticles is a major line of investigation to improve chemotherapeutic treatment. Though compatibility for proper envelopment of the drug and timely release at the tumor site are required of such a carrier, protecting its own physicochemical and morphological integrity during transport is another precondition.

Because of its superior polymerization capability, biocompatibility, pH dependence, and charging characteristics, chitosan has been in the forefront of potential drug carriers. Numerous synthesis routes for chitosan-based nanocarriers have been suggested to the extent that a search of the literature published since 2000 with the keywords “novel + nano + chitosan” in the title results in 527 articles, indicating the bewildering quality and quantity of the new information.

This review was carried out not only to peruse this large amount of work on chitosan-based anticancer drug delivery but also to extract manageable patterns from numerous synthesis routes. The main conclusion is that the synthesis methods suggested in literature can be combined into two main routes, and the degree of hydrophobicity of the drug determines which route should be followed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afkham A, Aghebati-Maleki L, Siahmansouric H, Sadreddini S, Ahmadia M, Dolati S, Jadidi-Niaragh F, Yousefi M, Siahmansouri H, Afkham NM, Akbarzadeh P, Yousefib M et al (2018) Chitosan (CMD)-mediated co-delivery of SN38 and Snail-specific siRNA as a useful anticancer approach against prostate cancer. Pharmacol Rep 70:418–425

    CAS  PubMed  Google Scholar 

  • Ahmad FJ, Islam F, Alam S, Mustafa G, Bhatnagar A, Khan ZI et al (2012) Development and evaluation of thymoquinone encapsulated chitosan nanoparticles for nose-to-brain targeting: a pharmaco scintigraphic study. Int J Nanomed 7:5705–5718

    Google Scholar 

  • Ahsan SM, Thomas M, Reddy K, Sooraparaju SG, Asthana A, Bhatnagar I et al (2018) Chitosan as biomaterial in drug delivery and tissue engineering. Int J Boil Macromol 110:97–109

    CAS  Google Scholar 

  • Alam S, Khan ZI, Mustafa G, Kumar M et al (2012) Development and evaluation of thymoquinone-encapsulated chitosan nanoparticles for nose-to-brain targeting: a pharmacoscintigraphic study. Int J Nanomedicine 7:5705–5718

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ali A, Ahmed S et al (2018) A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 109:273–286

    CAS  PubMed  Google Scholar 

  • Andriani Y, Grasianto C, Siswanta D, Mudasir M (2015) Retracted-glutaraldehyde-crosslinked chitosan-pectin nanoparticles as a potential carrier for curcumin delivery and its in vitro release study. Int J Drug Deliv 7:167–173

    CAS  Google Scholar 

  • Anto SM, Kannan C, Kumar KS, Kumar SV, Suganeshwari M et al (2011) Formulation of 5-fluorouracil loaded chitosan nanoparticles by emulsion droplet coalescence method for cancer therapy. Int J Pharm Biol Arch 2:926–931

    Google Scholar 

  • Aydin RST, Pulat M et al (2012) 5-Fluorouracil encapsulated chitosan nanoparticles for pH-stimulated drug delivery: evaluation of controlled release kinetics. J Nanomater 2012:10

    Google Scholar 

  • Bagheri M, Younesi H, Hajati S et al (2015) Application of chitosan-citric acid nanoparticles for removal of chromium (VI). Int J Biol Macromol 80:431–444

    CAS  PubMed  Google Scholar 

  • Ballard N, Aguirre M, Simula A, Leiza JR, Van Es S, Asua JM et al (2017) Nitroxide mediated suspension polymerization of methacrylic monomers. Chem Eng J 316:655–662

    CAS  Google Scholar 

  • Banerjee T, Mitra S, Singh AK et al (2002) Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles. Int J Pharm 243:93–105

    CAS  PubMed  Google Scholar 

  • Batrakova EV, Kabanov AV (2008) Pluronic block copolymers evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 130(2):98–106. https://doi.org/10.1016/j.jconrel.2008.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattarai N, Ramay HR, Chou SH et al (2006) Chitosan and lactic acid-grafted chitosan nanoparticles as carriers for prolonged drug delivery. Int J Nanomed 1:181–187

    CAS  Google Scholar 

  • Bianco A, Kostarelos K, Prato M (2008) Opportunities and challenges of carbon-based nanomaterials for cancer therapy. Expert Opin Drug Deliv 5:331–342

    CAS  PubMed  Google Scholar 

  • Bilati U, Allemann E, Doelker E (2005) Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci 24:67–75

    CAS  PubMed  Google Scholar 

  • Cao Y, Xu Y, Zhang J, Yang D, Liu J et al (2015) Well-controlled atom transfer radical polymerizations of acrylates using recyclable niobium complex nanoparticle as photocatalyst under visible light irradiation. Polymer 61:198–203

    CAS  Google Scholar 

  • Casettari L, Castagnino E, Vllasaliu D, Stolnik S, Howdle S, Illum L et al (2012) PEGylated chitosan derivatives: synthesis, characterizations and pharmaceutical applications. Prog Polym Sci 37(5):659–685

    CAS  Google Scholar 

  • Cesano F, Fenoglio G, Nisticò R, Carlos L et al (2015) One-step synthesis of magnetic chitosan polymer composite films. Appl Surf Sci 345:175–181

    CAS  Google Scholar 

  • Chabner BA, Lango DL (2001) Topoisomerase II inhibitors: the epipo- dophyllotoxins, m–AMSA and the ellipticine derivatives. In: Cancer chemo-theraphy and biotherapy: principles and practice. Lippoincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • Chang K, Liang B et al (1997) Heterogeneous N-deacetylation of chitin in alkaline solution. Carbohydr Res 303(3):327–332

    CAS  Google Scholar 

  • Chen J, Ma YD, Wang LC, Han WY et al (2019) Preparation of chitosan/SiO2-loaded graphene composite beads for efficient removal of bilirubin. Carbon 143:352–361

    CAS  Google Scholar 

  • Cheung CSF, Chung KKW, Lui JC, Lau CP, Hon PM et al (2007) Leachi- anone A as a potential anticancer drug by induction of apoptosis in human hepatoma HepG2 cells. Cancer Lett 253(2):224–235

    CAS  PubMed  Google Scholar 

  • Chi HJK, Amalini CJ, Karen SB, Marcus PG, Lynnette RF et al (2013) Anticancer activities of Ganoderma lucidum: active ingredients and pathways. Funct Food Health Dis 3(2):48–65

    Google Scholar 

  • Cihan E, Polat M, Polat H et al (2017) Designing of spherical chitosan nano-shells with micellar cores for solvation and safeguarded delivery of strongly lipophilic drugs. Colloids Surf A Physicochem Eng Asp 529:815–823

    CAS  Google Scholar 

  • Cragg GM, Schepartz SA, Suffness M, Grever MG et al (1993) The taxol supply crisis. new NCI policies for handling the large scale production of novel nat-ural product anticancer and anti-HIV agents. J Nat Prod 56(10):1657–1668

    CAS  PubMed  Google Scholar 

  • De Campos AM, Sanchez A, Alonso MJ et al (2001) Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cylosporin A. Int J Pharm 224:159–168

    PubMed  Google Scholar 

  • Deshayes S et al (2013) Phenylboronic acid-installed polymeric micelles for targeting sialylated epitopes in solid tumors. J Am Chem Soc 135:15501–15507

    CAS  PubMed  Google Scholar 

  • Dong Y et al (2014) Lipid-like nanomaterials for simultaneous gene expression and silencing in vivo. Adv Healthc Mater 3:1392–1397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong P, Rakesh KP, Manukumar HM, Mohammed YHE, Karthik CS, Sumathi S, Mallud P, Qin HL (2019) Innovativenano-carriersinanticancerdrugdelivery-acomprehensive review. Bioorg Chem 85:325–336

    CAS  PubMed  Google Scholar 

  • Dreis S et al (2007) Preparation, characterisation and maintenance of drug efficacy of doxorubicin-loaded human serum albumin (HSA) nanoparticles. Int J Pharm 341:207–214

    CAS  PubMed  Google Scholar 

  • Elgadir MA, Adam A, Uddin MS, Sarker MZI, Ferdosh S, Chowdhury AJK et al (2015) Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: a review. J Food Drug Anal 23(4):619–629

    CAS  PubMed  Google Scholar 

  • El-Shabouri MH et al (2002) Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A. Int J Pharm 249:101–108

    CAS  PubMed  Google Scholar 

  • Elzoghby AO, Samy WM, Elgindy NA (2012) Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release 157:168–182

    CAS  PubMed  Google Scholar 

  • Ensign LM, Cone R, Hanes J et al (2012) Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev 64(6):557–557

    CAS  PubMed  Google Scholar 

  • Fernandez-Urrusuno R, Cavlo P, Remunan LC et al (1999) Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res 16:1576–1581

    CAS  PubMed  Google Scholar 

  • Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S (1989) Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 55:R1–R4

    CAS  Google Scholar 

  • Gao JJ, Nakamura N, Min BS, Hirakawa A, Zuo F et al (2004) Quantitative determination of bitter principles in specimens of Ganoderma lucidum using high-performance liquid chromatography and its application to the evaluation of Ganoderma products. Chem Pharm Bull 52(6):688–695

    CAS  Google Scholar 

  • Gao X, He C, Xiao C, Zhuang X, Chen X (2013) Biodegradable pH-responsive polyacrylic acid derivative hydrogels with tunable swelling behavior for oral delivery of insulin. Polymer 54:1786–1793

    CAS  Google Scholar 

  • Gao P, Xia G, Bao Z, Feng C, Cheng X, Kong M, Liu Y, Chen X et al (2016) Chitosan based nanoparticles as protein carriers for efficient oral antigen delivery. Int J Biol Macromol 91:716–723

    CAS  PubMed  Google Scholar 

  • Garg T, Rath G, Goyal AK et al (2016) Inhalable chitosan nanoparticles as antitubercular drug carriers for an effective treatment of tuberculosis. Artif Cells Nanomed Biotechnol 44:997–1001

    CAS  PubMed  Google Scholar 

  • Gaucher G, Dufresne MH, Sant VP, Kang N, Leroux JC, Maysinger D et al (2005) Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release 109:169–188

    CAS  PubMed  Google Scholar 

  • George M, Abraham TE et al (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan-a review. J Control Release 114(1):1–14

    CAS  PubMed  Google Scholar 

  • George A, Shah PA, Shrivastav PS (2019) Guar gum: versatile natural polymer for drug delivery applications. Eur Polym J 112:722–735

    CAS  Google Scholar 

  • Ghosh R, Goswami U, Ghosh SS, Paul A, Chattopadhyay A (2015) Synergistic anticancer activity of fluorescent copper nanoclusters and cisplatin delivered through a hydrogel nanocarrier. ACS Appl Mater Interfaces 7:209–222

    CAS  PubMed  Google Scholar 

  • Gilbreth RN et al (2016) Lipid- and polyion complex-based micelles as agonist platforms for TNFR superfamily receptors. J Control Release 234:104–114

    CAS  PubMed  Google Scholar 

  • Gorochovceva N, Makuska R et al (2004) Synthesis and study of water-soluble chitosan-0-poly (ethylene glycol) graft copolymers. Eur Polym J 40:685–691

    CAS  Google Scholar 

  • Grenha A (2012) Chitosan nanoparticles: a survey of preparation methods. J Drug Target 20(4):291–300

    CAS  PubMed  Google Scholar 

  • Gupta NK, Nahata A, Dixit VK et al (2010) Development of spectrofluorimetric method for the determination of curcumin. Asian J Trad Med 5(1):12–18. https://www.cancer.gov

    CAS  Google Scholar 

  • Hande KR et al (1998) Etopside: four decades of development of a topoisomerase II inhibitor. Eur J Cancer 34(10):1514–1521

    CAS  PubMed  Google Scholar 

  • Hartwell JL et al (1971) Plants used against cancer – a survey. Lloydia 34(4):204–255

    CAS  PubMed  Google Scholar 

  • Hawkins MJ, Soon-Shiong P, Desai N (2008) Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev 60:76–885

    Google Scholar 

  • Hojjati B, Charpentier PA et al (2008) Synthesis and kinetics of graft polymerization of methyl methacrylate from the RAFT coordinated surface of nano-TiO2. J Polym Sci A 46(12):3926–3937

    CAS  Google Scholar 

  • Honore S, Kamath K, Braguer D, Horwitz SB et al (2004) Synergistic suppression of microtubule dynamics by discodermolide and paclitaxel in non-small cell lung carcinoma cells. Cancer Res 64:4957–4964

    CAS  PubMed  Google Scholar 

  • Hosseinzadeh H, Pashaei S, Ramin S, Hosseinzadeh S, Khodaparast Z, Saadat Y et al (2018) Preparation of novel multi-walled carbon nanotubes nanocomposite adsorbent via RAFT technique for the adsorption of toxic copper ions. Sci Total Environ 640:303–314

    PubMed  Google Scholar 

  • Hosseinzadeh H, Pashaei S, Ramin S, Hosseinzadeh S, Khodaparast Z, Saadat Y et al (2019) Synthesis of stimuli-responsive chitosan nanocomposites via RAFT copolymerization for doxorubicin delivery. Int J Biol Macromol 121:677–685

    CAS  PubMed  Google Scholar 

  • Hu Y, Jiang X, Ding Y, Ge H, Yuan Y, Yang C (2002) Synthesis and characterization of chitosan poly (acrylic acid) nanoparticles. Biomaterials 23:3193–3201

    CAS  PubMed  Google Scholar 

  • Hua D, Tang J, Cheng J, Deng W, Zhu X et al (2008) A novel method of grafting modification of chitosan via REFT polymerization agent. Carbonhydr Polym 73:98–104

    CAS  Google Scholar 

  • Hunter AC, Moghimi SM, Elsom J, Wibroe PP et al (2012) Polymeric particulate technologies for oral drug delivery and targeting: a pathophysiological perspective. Nanomed Nanotechnol 8:5–20

    Google Scholar 

  • Jesus S, Soares E, Borchard G, Borges O et al (2017) Poly-e-caprolactone/chitosan nanoparticles provide strong adjuvant effect for hepatitis B antigen. Nanomedicine 12:2335–2348

    CAS  PubMed  Google Scholar 

  • Jiang J, Pan X, Cao J, Jiang J, Hua D, Zhu X et al (2012) Synthesis and property of chitosan graft copolymer by RAFT polymerization with tosylic acid–chitosan complex. Int J Biol Macromol 50(3):586–590

    CAS  PubMed  Google Scholar 

  • Jiang L, Duan H, Ji X et al (2018) Application of a simple desolvation method to increase the formation yield, physical stability and hydrophobic drug encapsulation capacity of chitosan-based nanoparticles. Int J Pharm 545:117–127

    CAS  PubMed  Google Scholar 

  • Jin X et al (2016) Efficient intravesical therapy of bladder cancer with cationic doxorubicin nanoassemblies. Int J Nanomed 11:4535–4544

    CAS  Google Scholar 

  • Kabanov AV, Batrakova EV, Alakhov VY et al (2002) Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release 82:189–212

    CAS  PubMed  Google Scholar 

  • Kafshgari MH, Khorram M, Mansouri M et al (2012) Preparation of alginate and chitosan nanoparticles using a new reverse micellar system. Iran Polym J 21:99–107

    CAS  Google Scholar 

  • Kairdolf BA et al (2013) Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu Rev Anal Chem 6:143–162

    CAS  Google Scholar 

  • Kamaraj S, Palanisamy UM, Mohamed MSBK, Gangasalam A, Maria GA, Kandasamy R et al (2018) Curcumin drug delivery by vanillin-chitosan coated with calcium ferrite hybrid nanoparticles as carrier. Eur J Pharm Sci 116:48–60

    PubMed  Google Scholar 

  • Karimi MH, Mahdaviniab GR, Massoumia B et al (2018) pH-controlled sunitinib anticancer release from magnetic chitosan nanoparticles crosslinked with κ-carrageenan. Mater Sci Eng C 91:705–714

    CAS  Google Scholar 

  • Kaur G, Mahajan M, Bassi P (2013) Derivatized polysaccharides: preparation, characterization, and application as bioadhesive polymer for drug delivery. Int J Polym Mater Polym Biomater 62:475–481

    CAS  Google Scholar 

  • Kavimani S, Manisenthilkumar KT, Ilango R, Krishnamoorthy G et al (1999) Effect of the methanolic extract of Glinus lotoides on Dalton’s ascitic lym- phoma. Biol Pharm Bull 22(11):1251–1252

    CAS  PubMed  Google Scholar 

  • Kawashima Y, Handa T, Takenaka H, Lin SY, Ando Y et al (1985a) Novel method for the preparation of controlled-release theophylline granules coated with a polyelectrolyte complex of sodium polyphosphate-chitosan. J Pharmacol Sci 74:264–268

    CAS  Google Scholar 

  • Kawashima Y, Handa T, Takenaka H, Lin SY, Ando Y et al (1985b) The effect of thickness and hardness of the coating film on the drug release of theophylline granules. Chem Pharm Bull 33:2469–2474

    CAS  Google Scholar 

  • Kloster GA, Meiorin C, Marcovich NE, Mosiewicki MA, Muraca DR, Pirota K et al (2015) Magnetic characterization of chitosan-magnetite nanocomposite films. Eur Polym J 72:202–211

    CAS  Google Scholar 

  • Krajewska B (2004) Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzym Microb Technol 35(2–3):126–139

    CAS  Google Scholar 

  • Kumar MN, Kumar N, Domb AJ (2000) Pharmaceutical polymeric controlled drug delivery systems. Adv Polymer Sci 160:45–117

    Google Scholar 

  • Kumar A, Sridevi K, Kumar NV, Nanduri S, Rajagopal S et al (2002) Hypericin in cancer treatment: more light on the way. Int J Biochem Cell Biol 34(3):221–241

    Google Scholar 

  • Kumari P et al (2017) Cholesterol-conjugated poly (D, L-lactide)-based micelles as a nanocarrier system for effective delivery of curcumin in cancer therapy. Drug Deliv 24:209–223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kurita K et al (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol 8:203–226

    CAS  Google Scholar 

  • Kwak CS, Moon SC, Lee MS et al (2006) Antioxidant, antimutagenic, and anti-tumor effects of pine needles (Pinus densiflora). Nutr Cancer 56(2):162–171

    CAS  PubMed  Google Scholar 

  • Lanksy EP, Robert AN et al (2007) Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J Ethnopharmacol 109(2):177–206

    Google Scholar 

  • Lanzalaco S, Scialdone O, Galia A, Fantin M, Matyjaszewski K, Isse AA, Gennaro A et al (2017) Atom transfer radical polymerization with different halides (F, Cl, Br, and I): is the process “living” in the presence of fluorinated initiators? Macromolecules 50(2):192–202

    CAS  Google Scholar 

  • Li P, Wang Y, Zeng F et al (2011) Synthesis and characterization of folate conjugated chitosan and cellular uptake of its nanoparticles in HT-29 cells. Carbohydr Res 346:801–806

    CAS  PubMed  Google Scholar 

  • Li Z et al (2015) Quantum dots loaded nanogels for low cytotoxicity, pH-sensitive fluorescence, cell imaging and drug delivery. Carbohydr Polym 121:477–485

    CAS  PubMed  Google Scholar 

  • Lin CC, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58:1379–1408

    CAS  PubMed  Google Scholar 

  • Liu X, Fang Z, Zhang X, Zhang B, Hu Q et al (2009) Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal. Langmuir 25(1):3–8

    CAS  PubMed  Google Scholar 

  • Liu SS, Yang SL, Paul CH et al (2018) Intranasal administration of carbamazepine-loaded carboxymethyl chitosan nanoparticles for drug delivery to the brain. Asian J Pharm Sci 13:72–81

    PubMed  Google Scholar 

  • Luckachan GE, Pillai CKS et al (2006) Chitosan/oligo L-lactide graft copolymers: effect of hydrophobic side chains on the physico-chemical properties and biodegradability. Carbohydr Polym 64:254–266

    CAS  Google Scholar 

  • Luque-Alcaraz AG, Lizardi-Mendoza J, Goycoolea FM et al (2016) Preparation of chitosan nanoparticles by nanoprecipitation and their ability as a drug nanocarrier. RSC Adv 6:59250–59256

    CAS  Google Scholar 

  • Maeda H, Nakamura H, Fang J et al (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65:71–79

    CAS  PubMed  Google Scholar 

  • Masuda Y, Shima G, Aiuchi T, Horie M, Hori K et al (2004) Involvement of tumor necrosis factor receptor-associated protein 1 (TRAP1) in apoptosis induced by beta-hydroxyisovalerylshikonin. J Biol Chem 279(41):42503–42515

    CAS  PubMed  Google Scholar 

  • Mazumder A, Cerella C, Diederich M (2018) Natural scaffolds in anticancer therapy and precision medicine. Biotechnol Adv 36:1563–1585

    CAS  PubMed  Google Scholar 

  • Mehrotra A, Nagarwal RC, Pandit JK et al (2010) Fabrication of lomustine loaded chitosan nanoparticles by spray drying andin vitrocytostatic activity on human lung cancer cell line L132. J Nanomed Nanotechnol 1:1–7

    Google Scholar 

  • Meng J, Sturgis TF, Youan BC et al (2011) Engineering tenofovir loaded chitosan nanoparticles to maximize microbicide mucoadhesion. Eur J Pharm Sci 44:57–67

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ming SC, Wan S Jr, Jaw DM, Jin LJ, Hee LG et al (2003) Cytotoxic sesquiter-pene lactones the root of Saussurea lappa. J Nat Prod 66(9):1175–1180

    Google Scholar 

  • Mitra S, Gaur U, Ghosh PC et al (2001) Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. J Control Release 74:317–323

    CAS  PubMed  Google Scholar 

  • Mo R, Jiang T, Gu Z (2014) Recent progress in multidrug delivery to cancer cells by liposomes. Nanomedicine 9:1117–1120

    CAS  PubMed  Google Scholar 

  • Motwani SK, Chopra S, Talegaonkar S et al (2008) Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimization and in vitro characterization. Eur J Pharm Biopharm 68:513–525

    CAS  PubMed  Google Scholar 

  • Moudi M, Go R, Yien CSK, Nazre M et al (2013) Vinca alkaloids. Int J Prev Med 4(11):1231–1235

    PubMed  PubMed Central  Google Scholar 

  • Mourdikoudis S, Pallares RM, Thanh TNK et al (2018) Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10:12871–12934

    CAS  PubMed  Google Scholar 

  • Mu Y, Fu Y, Li J, Yu X, Li Y, Wang Y, Wu X, Zhang K, Kong M, Feng C, Chen X et al (2019a) Multifunctional quercetin conjugated chitosan nano-micelles with P-gp inhibition and permeation enhancement of anticancer drug. Carbohyd Polym 203:10–18

    CAS  Google Scholar 

  • Mu Y, Li J, Yu X, Li Y, Wang Y, Wu X, Zhang K, Kong M, Feng C, Chen X, Fu Y et al (2019b) Multifunctional quercetin conjugated chitosan nano-micelles with P-gp inhibition and permeation enhancement of anticancer drug. Carbohydr Polym 203:10–18

    CAS  PubMed  Google Scholar 

  • Nahata A, Dixit VK et al (2011) Sphaeranthus indicus attenuates testosterone induced prostatic hypertrophy in albino rats. Phytother Res 25(12):1839–1848

    CAS  PubMed  Google Scholar 

  • Nahata A, Dixit VK et al (2012a) Ganoderma lucidum is an inhibitor of testosterone induced prostatic hyperplasia in rats. Andrologia 44(1):160–174

    PubMed  Google Scholar 

  • Nahata A, Dixit VK et al (2012b) Ameliorative effects of stinging nettle (Urtica dioica) on testosterone-induced prostatic hyperplasia in rats. Andrologia 44(1):396–409

    PubMed  Google Scholar 

  • Nahata A et al (2013) Ganoderma lucidum: a potent medicinal mushroom with numerous health benefits. Pharm Anal Acta 4:e159

    Google Scholar 

  • Nahata A (2017) Anticancer agents: a review of relevant information on important herbal drugs. Int J Clin Pharmacol Toxicol 6(2):250–255

    Google Scholar 

  • Nanjwade BK, Singh J, Parikh KA et al (2010) Preparation and evaluation of carboplatin biodegradable polymeric nanoparticles. Int J Pharm 385:176–180

    CAS  PubMed  Google Scholar 

  • Naskar S et al (2019) Chitosan-based nanoparticles: an overview of biomedical applications and its preparation. J Drug Deliv Sci Technol 49:66–81

    CAS  Google Scholar 

  • Newman DJ, Cragg GM, Snader KM et al (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66(7):1022–1037

    CAS  PubMed  Google Scholar 

  • Ngan LTK, Wang SL, Hiep ÐM et al (2014) Preparation of chitosan nanoparticles by spray drying, and their antibacterial activity. Res Chem Intermed 40:2165–2175

    CAS  Google Scholar 

  • Nicolás P, Ferreira ML, Lassalle V, Saleta M, Troiani H, Zysler R et al (2013) Preparation of iron oxide nanoparticles stabilized with biomolecules: experimental and mechanistic issues. Acta Biomater 9(1):4754–4762

    PubMed  Google Scholar 

  • Niu XF, Tian F, Wang LZ, Li XM, Zhou G, Fana YB et al (2014) Synthesis and characterization of chitosan-graft-poly(lactic acid) copolymer. Chin J Polym Sci 32(1):43–50

    CAS  Google Scholar 

  • Niwa T, Takeuchi H, Hino T, Kunou T, Kawashima Y et al (1993) Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with D,L-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method and the drug release behavior. J Contr Release 25:89–98

    CAS  Google Scholar 

  • Ohya Y, Shiratani M, Kobayashi H, Ouchi T et al (1994) Release behaviour of 5-fluorouracil from chitosan-gel nanospheres immobilizing 5-fluorouracil coated with polysaccharides and their cell specific cytotoxicity. Pure Appl Chem A 31:629–642

    Google Scholar 

  • Owen SC, Dianna CPY, Shoichet MS et al (2012) Polymeric micelle stability. Nano Today 7:53–65

    CAS  Google Scholar 

  • Pan Y, Li Y, Zhao H et al (2002) Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm 249:139–147

    CAS  PubMed  Google Scholar 

  • Park JH et al (2008) Polymeric nanomedicine for cancer therapy. Prog Polym Sci 33:113–137

    Google Scholar 

  • Parsian M, Unsoy G, Mutlu P, Yalcin S, Tezcaner A, Gunduz U et al (2016) Loading of Gemcitabine on chitosan magnetic nanoparticles increases the anticancer efficacy of the drug. Eur J Pharmacol 784:121–128

    CAS  PubMed  Google Scholar 

  • Parveen S, Sahoo SK (2008) Polymeric nanoparticles for cancer therapy. J Drug Target 16:108–123

    CAS  PubMed  Google Scholar 

  • Pawar D, Mangal S, Goswami R, Jaganathan KS et al (2013) Development and characterization of surface modified PLGA nanoparticles for nasal vaccine delivery: effect of mucoadhesive coating on antigen uptake and immune adjuvant activity. Eur J Pharm Biopharm 85:550–559

    CAS  PubMed  Google Scholar 

  • Pella MCG, Lima-Tenório MK, Tenório-Neto ET, Guilherme MR, Muniz EC, Rubira AF et al (2018) Chitosan-based hydrogels: from preparation to biomedical applications. Carbohydr Polym 196:233–245

    CAS  PubMed  Google Scholar 

  • Peppas N, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46

    CAS  PubMed  Google Scholar 

  • Petrov P, Yuan J, Yoncheva K, Müller AHE, Tsvetanov CB et al (2008) Wormlike morphology formation and stabilization of pluronic P123 micelles by solubilization of pentaerythritol tetraacrylate. J Phys Chem B 112:8879–8883

    CAS  PubMed  Google Scholar 

  • Pisha E, Chai H, Lee IS, Chagwedera TE, Farnsworth NR et al (1995) Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat Med 1(10):1046–1051

    CAS  PubMed  Google Scholar 

  • Plapied L, Duhem N, des Rieux A, Preat V et al (2011) Fate of polymeric nanocarriers for oral drug delivery. Curr Opin Colloid Interface Sci 16:228–237

    CAS  Google Scholar 

  • Polat H, Kutluay G, Polat M (2019) Dilution induced disintegration of micellar drug carriers in the presence of extra and intra micellar species, Submitted to macromolecules

    Google Scholar 

  • Prabaharan M et al (2015) Chitosan-based nanoparticles for tumor-targeted drug delivery. Int J Biol Macromol 72:1313–1322

    CAS  PubMed  Google Scholar 

  • Qi X et al (2015) Fabrication and characterization of a novel anticancer drug delivery system: salecan/poly (methacrylic acid) semi-interpenetrating polymer network hydrogel. ACS Biomater Sci Eng 1:1287–1299

    CAS  PubMed  Google Scholar 

  • Qi SS, Sun JH, Yu HH, Yu SQ (2017) Co-delivery nanoparticles of anti-cancer drugs for improving chemotherapy efficacy. Drug Deliv 24:1909–1926

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Y, Zhu J, Wang J, Gong R, Zheng M, Huang F et al (2013) Self-assembled phytosterol-fructose-chitosan nanoparticles as a carrier of anticancer drug. Nanosci Nanotechnol 13:1–7

    Google Scholar 

  • Radhakumary C, Nair PD, Mathew S, Reghunadhan Nair CP et al (2007) Synthesis, characterization, and properties of poly(vinyl acetate)- and poly(vinyl alcohol)-grafted chitosan. J Appl Polym Sci 104(3):1852–1859

    CAS  Google Scholar 

  • Rahimi S, Khoee S, Ghandi M (2019) Preparation and characterization of rod-like chitosan-quinoline nanoparticles as pH-responsive nanocarriers for quercetin delivery. Int J Biol Macromol 128:279–289

    CAS  PubMed  Google Scholar 

  • Rampino A, Borgogna M, Blasi P, Bellich B, Cesàro A et al (2013) Chitosan nanoparticles: preparation, size evolution and stability. Int J Pharm 455:219–228

    CAS  PubMed  Google Scholar 

  • Rao KM, Kumar A, Suneetha M, Han SS et al (2018) pH and near-infrared active; chitosan-coated halloysite nanotubes loaded with curcumin-Au hybrid nanoparticles for cancer drug delivery. Int J Biol Macromol 112:119–125

    CAS  PubMed  Google Scholar 

  • Razmi M, Divsalar A, Saboury AA, Izadi Z, Haertlé T, Mansuri-Torshizi H et al (2013) Beta-casein and its complexes with chitosan as nanovehicles for delivery of a platinum anticancer drug. Colloids Surf B Biointerfaces 112:362–367

    CAS  PubMed  Google Scholar 

  • Reddy YD, Dhachinamoorthi D, Chandra SKB et al (2013) Formulation and in vitro evaluation of antineoplastic drug loaded nanoparticles as drug delivery system. Afr J Pharm Pharmacol 7:1592–1604

    Google Scholar 

  • Renggli K, Nussbaumer MG, Urbani R, Pfohl T, Bruns N et al (2017) Biocatalytic atom transfer radical polymerization in a protein cage nanoreactor. Polym Chem 8:2133–2136

    CAS  Google Scholar 

  • Roveimiab Z, Mahdavian AR, Biazar E, Saeed Heidari K et al (2012) Preparation of magnetic chitosan nanocomposite particles and their susceptibility for cellular separation applications. J Colloid Sci Biotechnol 1:82–88

    CAS  Google Scholar 

  • Sachs-Barrable K, Lee SD, Wasan EK, Thomton SJ, Wasan KM et al (2007) Enhancing drug absorption using lipids: a case study presenting the development and pharmacological evaluation of a novel lipid-based oral amphotericin B formulation for the treatment of systemic fungal infections. Adv Drug Deliv Rev 60:692–701

    PubMed  Google Scholar 

  • Sajeesh S, Sharma CP (2005) Novel pH responsive polymethacrylic acid-chitosanpolyethylene glycol nanoparticles for oral peptide delivery. J Biomed Mater Res B Appl Biomater 76B:298–305

    Google Scholar 

  • Sajeesh S, Sharma CP (2006) Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery. Int J Pharm 325:147–154

    CAS  PubMed  Google Scholar 

  • Sasirekha R, Sheenab TS, Deepikac MS, Santhanama P, Townleye HE, Jeganathanb K, Kumara SD, Premkumard K et al (2019) Surface engineered Amphora subtropica frustules using chitosan as a drug delivery platform for anticancer therapy. Mat Sci Eng C-Mater 94:56–64

    CAS  Google Scholar 

  • Schiff PB, Fant J, Horwitz SB et al (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277(5698):665–667

    CAS  PubMed  Google Scholar 

  • Senapati S, Mahanta AK, Kumar S, Maiti P et al (2018) Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 3:7

    PubMed  PubMed Central  Google Scholar 

  • Shanmuganathan R, Edison TNJI, Lewis Oscar F, Ponnuchamy K, Shanmugame S, Pugazhendhi A et al (2019) Chitosan nanopolymers: an overview of drug delivery against cancer. Int J Biol Macromol 130:727–736

    CAS  PubMed  Google Scholar 

  • Shariatinia Z et al (2018) Carboxymethyl chitosan: properties and biomedical applications. Int J Biol Macromol 120:1406–1419

    CAS  PubMed  Google Scholar 

  • Shariatinia Z, Mazloom-Jalali A et al (2019) Chitosan nanocomposite drug delivery systems designed for theifosfamide anticancer drug using molecular dynamics simulations. J Mol Liq 273:346–367

    CAS  Google Scholar 

  • Shi M, Cai Q, Yao L, Mao Y, Ming Y et al (2006) Antiproliferation and apoptosis induced by curcumin in human ovarian cancer cells. Cell Biol Int 30(3):221–226

    CAS  PubMed  Google Scholar 

  • Shi C et al (2014) Actively targeted delivery of anticancer drug to tumor cells by redox-responsive star-shaped micelles. Biomaterials 35:8711–8722

    CAS  PubMed  Google Scholar 

  • Shi Y, Lammers T, Storm G, Hennink WE et al (2017) Physico-Chemical stability and drug retention of polymeric micelles for tumor-targeted drug delivery. Macromol Biosci 7(1):11

    Google Scholar 

  • Shukla SK, Mishra AK, Arotiba OA, Mamba BB et al (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59:46–58

    CAS  PubMed  Google Scholar 

  • Singh B, Singh B (2019) Developing a drug delivery carrier from natural polysaccharide exudate gum by graft-copolymerization reaction using high energy radiations. Int J Biol Macromol 127:450–459

    CAS  PubMed  Google Scholar 

  • Singh SK, Shanmugavel M, Kampasi H, Singh R, Mondhe DM et al (2007) Chemically standardized isolates from cedrus deodara stem wood having anticancer activity. Planta Med 73(6):519–526

    CAS  PubMed  Google Scholar 

  • Sun L, Chen Y, Zhou Y, Guo D, Fan Y, Guo F, Zheng Y, Chen W (2017) Preparation of 5-fluorouracil-loaded chitosan nanoparticles and study of the sustained release in vitro and in vivo. Asian J Pharm Sci 12:418–423

    PubMed  PubMed Central  Google Scholar 

  • Sutar YB, Telvekar YN et al (2018) Chitosan based copolymer-drug conjugate and its protein targeted polyelectrolyte complex nanoparticles to enhance the efficiency and specificity of low potency anticancer agent. Mat Sci Eng C-Mater 92:393–406

    CAS  Google Scholar 

  • Sutirman ZA, Sanagi MM, Abd Karim J, Abu Naim A, Wan Ibrahim WA et al (2018) New crosslinked-chitosan graft poly(N-vinyl-2-pyrrolidone) for the removal of Cu(II) ions from aqueous solutions. Int J Biol Macromol 107(Part A):891–897

    CAS  PubMed  Google Scholar 

  • Suzariana Samuri N, Hussein-Al-Ali SH, Kura A, Zobir Hussein M, Fakurazi S, Halim Shaari A et al (2016) Synthesis and characterization of magnetic chitosan-L-dopa nanocomposite. Curr Nanosci 12:487–492

    Google Scholar 

  • Talelli P, Waddingham W, Ewas A, Rothwell JC, Ward NS et al (2008) The effect of age on task-related modulation of interhemispheric balance. Exp Brain Res 186:59–66

    CAS  PubMed  Google Scholar 

  • Tana H, Qina F, Chenb D, Hanb S, Luc W, Yaoa X et al (2013) Study of glycol chitosan-carboxymethyl -cyclodextrins as anticancer drugs carrier. Carbohydr Polym 93:679–685

    Google Scholar 

  • Tang ZX, Qian JQ, Xi LE et al (2007) Preparation of chitosan nanoparticles as carrier for immobilized enzyme. Biotechnol 136:77–96

    CAS  Google Scholar 

  • Tian X, Song HS, Cho YM, Park B, Song YJ, Jang S, Kang SC (2017) Anticancer effect of Saussurea lappa extract via dual control of apoptosis and autophagy in prostate cancer cells. Medicine (Baltimore) 96:7606

    Google Scholar 

  • Tikhonov VE, Stepnova EA, Babak VG, Yamskov IA, Palma-Guerrero J, Jansson HB, Lopez-Llorca LV, Salinas J, Gerasimenko DV, Avdienko ID, Varlamov VP et al (2006) Bactericidal and antifungal activities of a low molecular weight chitosan and its N-/2(3)-(dodec-2-enyl)succinoyl/-derivatives. Carbohydr Polym 64(1):66–72. https://doi.org/10.1016/j.carbpol.2005.10.021

    Article  CAS  Google Scholar 

  • Tokumitsu H, Ichikawa H, Fukumori Y et al (1999) Chitosan-gadopentetic acid complex nanoparticles for gadolinium neutron capture therapy of cancer: preparation by novel emulsion droplet coalescence technique and characterization. Pharm Res 16:1830–1835

    CAS  PubMed  Google Scholar 

  • Tomme SRV, Storm G, Hennink WE (2008) In situ gelling hydrogels for pharmaceutical and biomedical applications. Int J Pharm 355:1–18

    PubMed  Google Scholar 

  • Toti US, Aminabhavi TM (2004) Modified guar gum matrix tablet for controlled release of diltiazem hydrochloride. J Control Release 95:567–577

    CAS  PubMed  Google Scholar 

  • Verma M, Singh SK, Bhushan S, Sharma VK, Datt P et al (2008) In vitro cytotoxic potential of Polyalthia longifolia on human cancer cell lines and induction of apoptosis through mitochondrial-dependent pathway in HL-60 cells. Chem Biol Interact 171(1):45–56

    CAS  PubMed  Google Scholar 

  • Vyas R, Gupta N, Nimesh S (2016) Nanobiomaterials in cancer therapy. In: Chitosan nanoparticles for efficient and targeted delivery of anticancer drugs, 7th edn, Bucharest, pp 281–306

    Google Scholar 

  • Wang X, Yuan S, Wang J, Lin P, Liu G et al (2006) Anticancer activity of litchi fruit pericarp extract against human breast cancer in vitro and in vivo. Toxicol Appl Pharmacol 215(2):168–178

    CAS  PubMed  Google Scholar 

  • Wang LS, Wang CY, Yang CH, Hsieh CL, Huang KS et al (2015) Synthesis and anti-fungal effect of silver nanoparticles–chitosan composite particles. Int J Nanomed 10:2685–2696

    CAS  Google Scholar 

  • Wani MC, Taylor WHC, Coggon ME, Phail MC et al (1971) Plant antitumor agents. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93(9):2325–2327

    CAS  PubMed  Google Scholar 

  • WHO (2018). https://www.who.int/news-room/fact-sheets/detail/cancer

  • Widodo N, Kaur K, Shrestha BG, Takagi Y, Ishii T et al (2007) Selective killing of cancer cells by leaf extract of Ashwagandha: identification of a tumor-inhibitory factor and the first molecular insights to its effect. Clin Cancer Res 13(7):2298–2306

    CAS  PubMed  Google Scholar 

  • Wu Y, Yang W, Wang C, Hu J, Fu S et al (2005) Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. Int J Pharm 295:235–245

    CAS  PubMed  Google Scholar 

  • Xu Z, Graham K, Foote M, Liang F, Rizkallah R, Hurt M, Wang Y, Wu Y, Zhou Y et al (2013) 14-3-3 protein targets misfolded chaperone-associated proteins to aggresomes. J Cell Sci 126:4173–4186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xue MY, Steven HU, Lu YF, Zhang Y, Jiang XN, An S et al (2015a) Development of chitosan nanoparticles as drug delivery system for a prototype capsid inhibitor. Int J Pharm 495:771–782

    CAS  PubMed  Google Scholar 

  • Xue B et al (2015b) Intracellular degradable hydrogel cubes and spheres for anti-cancer drug delivery. ACS Appl Mater Interfaces 7:13633–13644

    CAS  PubMed  Google Scholar 

  • Yaguchi T, Sumimoto T, Kudo-Saito C, Tsukamoto N, Ueda R, Iwata Kajihara T, Nishio H, Kawamura N, Kawakami Y et al (2011) The mechanisms of cancer immune escape and development of overcoming strategies. Int J Hematol 93:294–300

    PubMed  Google Scholar 

  • Yamamoto K, Yoshida S, Kadokawa JI et al (2014) Surface-initiated atom transfer radical polymerization from chitin nanofiber macroinitiator film. Carbohydr Polym 112:119–124

    CAS  PubMed  Google Scholar 

  • Yang Y, Wang S, Wang Y et al (2014) Advances in self-assembled chitosan nanomaterials for drug delivery. Biotechnol Adv 32:1301–1316

    CAS  PubMed  Google Scholar 

  • Yasmin H, Mazumdar T, Mittal P, Chakravarty AK et al (1998) Turmeric mediated activation of lymphocytes and induction of apoptosis of tumor cells. J Immunol Cell Biol 16(5):221–232

    Google Scholar 

  • Yuan Q, Shah J, Hein S, Misra RDK et al (2010) Controlled and extended drug release behavior of chitosan-based nanoparticle carrier. Acta Biomater 6:1140–1148

    CAS  PubMed  Google Scholar 

  • Zhang E, Xing R, Liu S, Li K, Qin Y, Yu H, Li P et al (2019) Vascular targeted chitosan-derived nanoparticles as docetaxel carriers for gastric cancer therapy. Int J Biol Macromol 126:662–672

    CAS  PubMed  Google Scholar 

  • Zhao D et al (2010) Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles. Int J Nanomed 5:669–677

    CAS  Google Scholar 

  • Zhao LM, shi LE, Zhang ZL, Chen JM, Shi DD, Yang J, Tang ZX et al (2011a) Preparation and application of chitosan nanoparticles and nanofibers. Braz J Chem Eng 28:353–362

    CAS  Google Scholar 

  • Zhao K, Shi XM, Zhao Y, Wei HX, Sun QS, Huang TT et al (2011b) Preparation and immunological effectiveness of a swine influenza DNA vaccine encapsulated in chitosan nanoparticles. Vaccine 29:8549–8556

    CAS  PubMed  Google Scholar 

  • Zhou W, Li C, Wang Z, Zhang W, Liu J (2016) Factors affecting the stability of drug-loaded polymeric micelles and strategies for improvement. J Nanopart Res 18:275–293

    Google Scholar 

  • Zhu Y, Liao L (2015) Applications of nanoparticles for anticancer drug delivery: a review. J Nanosci Nanotechnol 15:4753–4773

    CAS  PubMed  Google Scholar 

  • Zrazhevskiy P, Sena M, Gao X (2010) Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev 39:4326–4354

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hurriyet Polat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Polat, M., Polat, H. (2019). Recent Advances in Chitosan-Based Systems for Delivery of Anticancer Drugs. In: Jana, S., Jana, S. (eds) Functional Chitosan. Springer, Singapore. https://doi.org/10.1007/978-981-15-0263-7_7

Download citation

Publish with us

Policies and ethics