Skip to main content
Log in

Overexpression and Biochemical Characterization of a Thermostable Phytase from Bacillus subtilis US417 in Pichia pastoris

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The overexpression of the native gene encoding the thermostable Bacillus subtilis US417 phytase using Pichia pastoris system is described. The phytase gene, in which the sequence encoding the signal peptide was replaced by that of the α-factor of Saccharomyces cerevisiae, was placed under the control of the methanol-inducible promoter of the alcohol oxidase 1 gene and expressed in Pichia pastoris. Small-scale expression experiments and activity assays were used to screen positive colonies. A recombinant strain was selected and produces 43 and 227 U/mL of phytase activity in shake flasks and in high-cell-density fermentation, respectively. The purified phytase was glycosylated protein and varied in size (50–65 kDa). It has a molecular mass of 43 kDa when it was deglycosylated. The purified r-PHY maintains 100 % of its activity after 10 min incubation at 75 °C and pH 7.5. This thermostable phytase, which is also active over broad pH ranges, may be useful as feed additives, since it can resist the temperature used in the feed-pelleting process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reddy, N. R., Sathe, S. K., & Salunkhe, D. K. (1982). Phytates in legumes and cereals. Advances in Food Research, 28, 1–92.

    Article  CAS  Google Scholar 

  2. Nayani, N. R., & Markakis, P. (1983). Effects of inositol phosphates on mineral utilization. Federal Reserve, 45, 819–826.

    Google Scholar 

  3. Abulkalam, M. S. (2008). Demonizing phytate. Nature Biotechnology, 26, 496–497.

    Google Scholar 

  4. Simons, P. C., Versteegh, H. A. J., Jongbloed, A. W., Kemme, P. A., Slump, P., Bos, K. D., et al. (1990). Improvement of phosphorus availability by microbial phytase in broilers and pigs. British Journal of Nutrition, 64, 525–540.

    Article  CAS  Google Scholar 

  5. Pen, J., Verwoerd, T. C., Van Paridon, P. A., & Beudeker, R. F. (1993). Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization. Bioresource Technology, 11, 811–814.

    CAS  Google Scholar 

  6. Lei, X. G., Porres, J. M., Mullaney, E. J., & Brinch-Pedersen, H. (2007). Phytase: source, structure and application. In J. Polaina & A. P. MacCabe (Eds.), Industrial enzymes: Structure, function and applications (pp. 505–529). Dordrecht: Springer.

    Chapter  Google Scholar 

  7. Mullaney, E. J., & Ullah, A. H. (2007). Phytases: Attributes, catalytic mechanisms and applications. In L. Turner, A. E. Richardson, & E. J. Mullaney (Eds.), Inositol phosphates: Linking agriculture and the environment (pp. 97–110). Oxford: CAB International.

    Chapter  Google Scholar 

  8. Oh, B. H. (2000). Crystal structures of a novel thermostable phytase in partially and fully calcium-loaded states. Natural Structural Biology, 7, 147–153.

    Google Scholar 

  9. Kerovuo, J., Lauraeus, M., Nurminen, P., Kalkkinen, N., & Apajalahti, J. (1998). Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Applied and Environment Microbiology, 64, 2079–2085.

    CAS  Google Scholar 

  10. Kim, Y. O., Kim, H. K., Bae, K. S., Yu, J. H., & Oh, T. K. (1998). Purification and properties of a thermostable phytase from Bacillus sp. DS11. Enyzme and Microbial Technology, 22, 2–7.

    Article  CAS  Google Scholar 

  11. Kim, D. H., Oh, B. C., Choi, W. C., Lee, J. K., & Oh, T. K. (1999). Enzymatic evaluation of Bacillus amyloliquefaciens phytase as a feed additive. Biotechnology Letters, 20, 925–927.

    Article  Google Scholar 

  12. Oh, B. C., Choi, W. C., Park, S., Kim, Y. O., & Oh, T. K. (2004). Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Applied Microbiology and Biotechnology, 63, 362–372.

    Article  CAS  Google Scholar 

  13. Choi, Y. M., Suh, H. J., & Kim, J. M. (2001). Purification and properties of extracellular phytase from Bacillus sp. KHU-10. Journal of Protein Chemistry, 20, 287–292.

    Article  CAS  Google Scholar 

  14. Tye, A. J., Siu, F. K. Y., Leung, T. Y. C., & Lim, B. L. (2002). Molecular cloning and the biochemical characterization of two novel phytases from B. subtilis 168 and B. licheniformis. Applied Microbiology and Biotechnology, 59, 190–197.

    Article  CAS  Google Scholar 

  15. Lee, J., Choi, Y., Lee, P. C., Kang, S., Bok, J., & Cho, J. (2007). Recombinant production of Penicillium oxalicum PJ3 phytase in Pichia Pastoris. World Journal of Microbiology & Biotechnology, 23, 443–446.

    Article  CAS  Google Scholar 

  16. Soni, S. K., & Khire, J. M. (2007). Production and partial characterization of two types of phytase from Aspergillus niger NCIM 563 under submerged fermentation conditions. World Journal of Microbiology & Biotechnology, 23, 1585–1593.

    Article  CAS  Google Scholar 

  17. Fu, D. W., Huang, H. Q., Luo, H. Y., Wang, Y. R., Yang, P. L., Meng, K., et al. (2008). A highly pH-stable phytase from Yersinia kristeensenii: cloning, expression, and characterization. Enyzme and Microbial Technology, 42, 499–505.

    Article  CAS  Google Scholar 

  18. Guerrero-Olazaran, M., Rodriguez-Blanco, L., Carreon-Trevino, J. G., Gallegos-Lopez, J. A., & Viader-Salvado, J. M. (2010). Expression of a Bacillus phytase C gene in Pichia pastoris and properties of the recombinant enzyme. Applied and Environment Microbiology, 76, 5601–5608.

    Article  CAS  Google Scholar 

  19. Viader-Salvado, J. M., Gallegos-Lopez, J. A., Carreon-Trevin, J. G., Castillo-Galva, M., Rojo-Domínguez, A., & Guerrero-Olazara, M. (2010). Design of thermostable beta-Propeller phytases with activity over a broad range of pHs and their overproduction by Pichia pastoris Appl. Environmental Microbiology, 76, 6423–6430.

    CAS  Google Scholar 

  20. Zou, L. K., Wang, H. N., Pan, X., Tian, G. B., Xie, Z. W., Wu, Q., et al. (2008). Expression, purification and characterization of a phyAm-phyCs fusion phytase. Journal of Zheijang University Science B, 9, 536–545.

    Article  CAS  Google Scholar 

  21. Wang, Q., Fu, S. J., Jian-Yi Sun, J. Y., & Weng, X. Y. (2011). Characterization of a thermostable alkaline phytase from Bacillus licheniformis ZJ-6 in Pichia pastoris. World Journal of Microbiology & Biotechnology, 27, 1247–1253.

    Article  CAS  Google Scholar 

  22. Farhat, A., Chouayekh, H., Farhat, M., Bouchaala, K., & Bejar, S. (2008). Gene cloning and characterization of a thermostable phytase from Bacillus subtilis US417 and assessment of its potential as a feed additive in comparison with a commercial enzyme. Molecular Biotechnology, 40, 127–135.

    Article  CAS  Google Scholar 

  23. Gulati, H. K., Chadha, B. S., & Saini, H. S. (2007). Production and characterization of thermostable alkaline phytase from Bacillus laevolacticus isolated from rhizosphere soil. Journal of Industrial Microbiology, 34, 91–98.

    Article  CAS  Google Scholar 

  24. Fu, S. J., Sun, J. Y., Qian, L. C., & Li, Z. Y. (2008). Bacillus phytases: present scenario and future perspectives. Applied Biochemistry and Biotechnology, 151, 1–8.

    Article  CAS  Google Scholar 

  25. Cereghino, J. L., & Cregg, J. M. (2000). Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiology Reviews, 24, 45–66.

    Article  CAS  Google Scholar 

  26. Han, Y. M., & Lei, X. G. (1999). Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris. Archives of Biochemistry and Biophysics, 364, 83–90.

    Article  CAS  Google Scholar 

  27. Wyss, M., Brugger, R., Kronenberger, A., Remy, R., Fimbel, R., Oesterhelt, G., et al. (1999). Biochemical characterization of fungal phytases (myo-inositol hexakisphosphatephosphohydrolases): catalytic properties. Applied and Environment Microbiology, 65, 367–373.

    CAS  Google Scholar 

  28. Rodriguez, E., Mullaney, E. J., & Lei, X. G. (2000). Expression of Aspergillus fumigates phytase gene in Pichia pastoris and characterization of the recombinant enzyme. Biochemical and Biophysical Research Communications, 268, 373–378.

    Article  CAS  Google Scholar 

  29. Rodriguez, E., Wood, Z. A., Karplus, P. A., & Lei, X. G. (2000). Site directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli acid phosphatase/phytase expressed in Pichia pastoris. Archives of Biochemistry and Biophysics, 382, 105–112.

    Article  CAS  Google Scholar 

  30. Tschopp, J. F., Sverlow, G., Kosson, R., Craig, W., & Grinna, L. (1987). High level secretion of glycosylated invertase in the methylotrophic yeast Pichia pastoris. Biotechnology, 5, 1305–1308.

    Article  CAS  Google Scholar 

  31. Laborde, C., Chemardin, P., Bigey, F., Combarnous, Y., Moulin, G., & Boze, H. (2004). Overexpression of ovine leptin in Pichia pastoris: physiological yeast response to leptin production and characterization of the recombinant hormone. Yeast, 21, 249–263.

    Article  CAS  Google Scholar 

  32. Cregg, J. M., & Russell, K. A. (1998). Transformation. Methods in Molecular Biology, 103, 27–39.

    CAS  Google Scholar 

  33. Shrestha, B., Blondeau, K., Stevensa, W. F., & Hegarat, F. L. (2004). Expression of chitin deacetylase from Colletotrichum lindemuthianum in Pichia pastoris: purification and characterization. Protein Expression and Purification, 38, 196–204.

    Article  CAS  Google Scholar 

  34. Engelen, A. J., van der Heeft, F. C., Randsdorp, P. H., & Smit, E. L. (1994). Simple and rapid determination of phytase activity. Journal of AOAC International, 77, 760–764.

    CAS  Google Scholar 

  35. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  36. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  37. Romanos, M., Scorer, C., Sreekrishna, K., & Clare, J. (1998). The generation of multicopy recombinant strains. Methods in Molecular Biology, 103, 55–72.

    CAS  Google Scholar 

  38. Clare, J. J., Romanos, M. A., Rayment, F. R., Rowendder, J. E., Smith, M. A., Payne, M. M., et al. (1991). Production of mouse epidermal growth factor in yeast: high-level secretion using Pichia pastoris strains containing multiple gene copies. Gene, 105, 205–212.

    Article  CAS  Google Scholar 

  39. Farhat-Khemakhem, A., Ben Farhat, M., Boukhris, I., Bejar, W., Bouchaala, K., Kammoun, R., et al. (2012). Heterologous expression and optimization using experimental designs allowed highly efficient production of the PHY US417 phytase in Bacillus subtilis 168. AMB Express, 2, 10.

    Article  Google Scholar 

  40. Kim, Y. O., Lee, J. K., Oh, B. C., & Oh, T. K. (1999). High level expression of a recombinant thermostable phytase in Bacillus subtilis. Bioscience, Biotechnology, and Biochemistry, 63(12), 2205–2207.

    Article  CAS  Google Scholar 

  41. Vuolanto, A., von Weymarn, N., Kerovuo, J., Ojamo, H., & Leisola, M. (2001). Phytase production by high cell density culture of recombinant Bacillus subtilis. Biotechnology Letters, 23(10), 761–766.

    Article  CAS  Google Scholar 

  42. Wang, H. N., Wu, Q., Zhao, H. X., Zou, L. K., & Liu, S. G. (2005). Secretory expression of Bacillus subtilis phytase phyC in Pichia pastoris. Journal of Zhejiang University (Agriculture and Life Sciences), 31(5), 621–627.

    CAS  Google Scholar 

  43. Viader-Salvado, J. M., Castillo-Galvan, M., Fuentes-Garibay, J. A., Iracheta-Cardenas, M. M., & Guerrero-Olazaran, M. (2013). Optimization of five environmental factors to increase beta-propeller phytase production in Pichia pastoris and impact on the physiological response of the host. Biotechnology Progress, 29(6), 1377–1385.

    Article  CAS  Google Scholar 

  44. Shimizu, M. (1992). Purification and characterization of phytase from Bacillus subtilis (natto) N-77. Bioscience, Biotechnology, and Biochemistry, 56, 1266–1269.

    Article  CAS  Google Scholar 

  45. Powar, V. K., & Jagannathan, V. (1982). Purification and properties of phytate-specific phosphatase from Bacillus subtilis. Journal of Bacteriology, 151, 1102–1108.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aïda Hmida-Sayari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hmida-Sayari, A., Elgharbi, F., Farhat, A. et al. Overexpression and Biochemical Characterization of a Thermostable Phytase from Bacillus subtilis US417 in Pichia pastoris . Mol Biotechnol 56, 839–848 (2014). https://doi.org/10.1007/s12033-014-9764-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9764-y

Keywords

Navigation