Skip to main content
Log in

Plant–Pathogen Interactions: What Microarray Tells About It?

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Plant defense responses are mediated by elementary regulatory proteins that affect expression of thousands of genes. Over the last decade, microarray technology has played a key role in deciphering the underlying networks of gene regulation in plants that lead to a wide variety of defence responses. Microarray is an important tool to quantify and profile the expression of thousands of genes simultaneously, with two main aims: (1) gene discovery and (2) global expression profiling. Several microarray technologies are currently in use; most include a glass slide platform with spotted cDNA or oligonucleotides. Till date, microarray technology has been used in the identification of regulatory genes, end-point defence genes, to understand the signal transduction processes underlying disease resistance and its intimate links to other physiological pathways. Microarray technology can be used for in-depth, simultaneous profiling of host/pathogen genes as the disease progresses from infection to resistance/susceptibility at different developmental stages of the host, which can be done in different environments, for clearer understanding of the processes involved. A thorough knowledge of plant disease resistance using successful combination of microarray and other high throughput techniques, as well as biochemical, genetic, and cell biological experiments is needed for practical application to secure and stabilize yield of many crop plants. This review starts with a brief introduction to microarray technology, followed by the basics of plant–pathogen interaction, the use of DNA microarrays over the last decade to unravel the mysteries of plant–pathogen interaction, and ends with the future prospects of this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EST:

Expressed sequence tag

RT-PCR:

Reverse transcriptase polymerase chain reaction

MeV:

MultiExperiment Viewer

EDGE:

Extraction of differential gene expression

FiRe:

Find Regulon

ROS:

Reactive oxygen species

SA:

Salicylic acid

NO:

Nitric oxide

JA:

Jasmonic acid

SAR:

Systemic acquired resistance

ISR:

Induced systemic resistance

PR:

Pathogenesis-related

GR:

Glucocorticord receptor

Dex:

Dexamethasone

NPR:

Nonexpressor of pathogenesis related genes

MJ:

Methyl jasmonate

TSWV:

Tomato spotted wilt virus

HR:

Hypersensitive response

DRG:

Differentially regulated genes

HSP:

Heat shock protein

PEBV:

Pea early browning virus

CELO:

Chicken embryo lethal orphan

PAMP:

Pathogen-associated molecular patterns

DAMP:

Danger-associated molecular patterns

PTI:

PAMPs-triggered immunity

ETI:

Effector-triggered immunity

ORMV:

Oilseed rape mosaic virus

MGED:

Microarray Gene Expression Data Society

References

  1. Dodds, P. N., & Rathjen, J. P. (2010). Plant immunity: Towards an integrated view of plant-pathogen interactions. Nature Reviews Genetics, 11, 539–548.

    Article  CAS  Google Scholar 

  2. De Wit, P. J. (2007). How plants recognize pathogens and defend themselves. Cellular and Molecular Life Sciences, 64, 2726–2732.

    Article  Google Scholar 

  3. Gachomo, E. W., Shonukan, O. O., & Kotchoni, S. O. (2003). The molecular initiation and subsequent acquisition of disease resistance in plants. African Journal of Biotechnology, 2, 26–32.

    CAS  Google Scholar 

  4. Dangl, J. L., & Jones, J. D. G. (2001). Plant pathogens and integrated defense responses to infection. Nature, 411, 826–833.

    Article  CAS  Google Scholar 

  5. Zipfel, C. (2009). Early molecular events in PAMP-triggered immunity. Current Opinion in Plant Biology, 12, 414–420.

    Article  CAS  Google Scholar 

  6. Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews Genetics, 10, 57–63.

    Article  CAS  Google Scholar 

  7. Libault, M., Farmer, A., Brechenmacher, L., Drnevich, J., Langley, R. J., Bilgin, D. D., et al. (2010). Complete transcriptome of the soybean root hair cell, a single-cell model, and its alteration in response to Bradyrhizobium japonicum infection. Plant Physiology, 152, 541–552.

    Article  CAS  Google Scholar 

  8. Santner, A., & Estelle, M. (2007). The JAZ proteins link jasmonate perception with transcriptional changes. The Plant Cell, 19, 3839–3842.

    Article  CAS  Google Scholar 

  9. Andrew, F. B., Jinrong, W., & Mark, D. F. (2002). Probing plant-pathogen interaction and downstream defense signaling using DNA microarray. Functional & Integrative Genomics, 2, 259–273.

    Article  Google Scholar 

  10. Schena, M., Shalon, D., Davis, R. W., & Brown, P. O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science., 20, 368–371.

    Google Scholar 

  11. Tan, K. C., Ipcho, S. V. S., Trengove, R. D., Oliver, R. P., & Solomon, P. S. (2009). Assessing the impact of transcriptomics, proteomics and metabolomics on fungal phytopathology. Molecular Plant Pathology, 10, 703–715.

    Article  CAS  Google Scholar 

  12. Stoughton, R. B. (2005). Applications of DNA microarrays in biology. Annual Review of Biochemistry, 74, 53–82.

    Article  CAS  Google Scholar 

  13. Webster, C. G., Wylie, S. J., & Jones, M. G. K. (2004). Diagnosis of plant viral pathogen. Current Science., 86, 1604–1607.

    CAS  Google Scholar 

  14. Hammond-Kosack, K. E., & Jones, J. D. G. (2000). Responses to plant pathogens. In Biochemistry and molecular biology of plants (pp. 1102–1156). Rockville: American Society of Plant Physiology.

  15. Lucas, J. A. (1998). Plant pathology and plant pathogens (p. 8). Oxford: Blackwell Science.

    Google Scholar 

  16. Schenk, P. M., Kazan, K., Wilson, L., Anderson, J. P., Richmond, T., Somerville, S. C., et al. (2000). Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proceedings of the National Academy of Science, 97, 11655–11660.

    Article  CAS  Google Scholar 

  17. Schenk, P. M., Choo, J. H., & Wong, C. L. (2009). Microarray analyses to study plant defense and rhizosphere microbe interaction. CAB: Perspective in Agriculture, Veterinary, Science, Nutrition, and Natural Resources., 4, 45–46.

    Google Scholar 

  18. Torres, M. A., Jonathan, D. G., & Dangl, J. L. (2006). Reactive oxygen species signaling in response to pathogen. Plant Physiology, 141, 373–378.

    Article  CAS  Google Scholar 

  19. Vallad, G. E., & Goodman, R. M. (2004). Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Science, 44, 1920–1934.

    Article  Google Scholar 

  20. Dong, X. (2001). Genetic dissection of systemic acquired resistance. Current Opinion in Plant Biology, 4, 309–314.

    Article  CAS  Google Scholar 

  21. Glazebrook, J. (2001). Genes controlling expression of defense responses in Arabidopsis—2001 status. Current Opinion in Plant Biology, 4, 301–308.

    Article  CAS  Google Scholar 

  22. Maleck, K., Levine, A., Euglem, T., Morgan, A., Schmids, J., Lawton, K. A., et al. (2000). The Transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genetics, 26, 403–410.

    Article  CAS  Google Scholar 

  23. Lebel, E., Heifetz, P., Thorne, L., Uknes, S., Ryals, J., & Ward, E. (1998). Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. The Plant Journal, 16, 223–233.

    Article  CAS  Google Scholar 

  24. Wang, D., Weaver, N. D., Kesarwani, M., & Dong, X. (2005). Induction of protein secretory pathway is required for systemic acquired resistance. Science., 308, 1036–1040.

    Article  CAS  Google Scholar 

  25. Kinkema, M., Fan, W., & Dong, X. (2000). Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell., 12, 2339–2350.

    Article  CAS  Google Scholar 

  26. Schenk, P. M., Kazan, K., Manners, J. M., Anderson, J. P., Simpson, R. S., Wilson, I. W., et al. (2003). Systemic gene expression In Arabidopsis during an incompatible interaction with Alternaria brassicicola. Plant Physiology, 132, 999–1010.

    Article  CAS  Google Scholar 

  27. Salzman, R. A., Brady, J. A., Finlayson, S. A., Buchanan, C. D., Summer, E. J., Sun, F., et al. (2005). Transcriptional profiling of sorghum induced by methyl jasmonate, salicylic acid, and aminocyclopropane carboxylic acid reveals cooperative regulation and novel gene responses. Plant Physiology, 138, 352–368.

    Article  CAS  Google Scholar 

  28. Both, M., Csukai, M., Stumpf, M. P., & Spanu, P. D. (2005). Gene expression profiles of Blumeria graminis indicate dynamic changes to primary metabolism during development of an obligate biotrophic pathogen. Plant Cell, 17, 2107–2122.

    Article  CAS  Google Scholar 

  29. Both, M., Eckert, S. E., Csukai, M., Muller, E., Dimopoulos, G., & Spanu, P. D. (2005). Transcript profiles of Blumeria graminis development during infection reveal a cluster of genes that are potential virulence determinants. Molecular Plant-Microbe Interactions, 18, 125–133.

    Article  CAS  Google Scholar 

  30. Thomas, S. W., Rasmussen, S. W., Glaring, M. A., Rouster, J. A., Christiansen, S. K., & Oliver, R. P. (2001). Gene identification in the obligate fungal pathogen Blumeria graminis by expressed sequence tag analysis. Fungal Genetics and Biology, 33, 195–211.

    Article  CAS  Google Scholar 

  31. Idnurm, A., & Howlett, B. J. (2002). Isocitrate lyase is essential for the pathogenicity of the fungus Leptosphaeria maculans to Canola (Brassica napus). Eukaryotic Cell, 1, 719–724.

    Article  CAS  Google Scholar 

  32. Solomon, P. S., Lee, R. C., Wilson, T. J. G., & Oliver, R. P. (2004). Pathogenicity of Stagonospora nodorum requires malate synthase. Molecular Microbiology, 53, 1065–1073.

    Article  CAS  Google Scholar 

  33. Solomon, P. S., Tan, K. C., Sanchez, P., Cooper, R. M., & Oliver, R. P. (2004). The disruption of a Gα subunit sheds new light on the pathogenicity of Stagonospora nodorum on wheat. Molecular Plant-Microbe Interactions, 7, 456–466.

    Article  Google Scholar 

  34. Wang, Z. Y., Thornton, C. R., Kershaw, M. J., Li, D. B., & Talbot, N. J. (2003). The glyoxylate cycle is required for temporal regulation of virulence by the plant pathogenic fungus Magnaporthe oryzae. Molecular Microbiology, 47, 1601–1612.

    Article  CAS  Google Scholar 

  35. Scheideler, M., Schlaich, N. L., Fellenberg, K., Beissbarth, T., Hauser, N. C., Vingron, M., et al. (2002). Monitoring the switch from housekeeping to pathogen defence metabolism in Arabidopsis thaliana using cDNA Arrays. Journal of Biological Chemistry, 277, 10555–10561.

    Article  CAS  Google Scholar 

  36. Gjetting, T., Hagedorn, P. H., Schweizer, P., Thordal-Christensen, H., Carver, T. L. W., & Lyngkjær, M. F. (2007). Single-cell transcript profiling of barley attacked by the powdery mildew fungus. Molecular Plant-Microbe Interactions, 20, 235–246.

    Article  CAS  Google Scholar 

  37. Sreenivasulu, N., Altschmied, L., Panitz, R., Hahnel, U., Michalek, W., Weschke, W., et al. (2002). Identification of genes specifically expressed in maternal and filial tissues of barley caryopses: A cDNA array analysis. Molecular Genetics and Genomics, 266, 758–767.

    Article  CAS  Google Scholar 

  38. Catoni, M., Miozzi, L., Fiorilli, V., Lanfranco, L., & Accotto, G. P. (2009). Comparative analysis of expression profiles in shoots and roots of tomato systemically infected by tomato spotted wilt virus reveals organ-specific transcriptional responses. Molecular Plant-Microbe Interactions, 22, 1504–1513.

    Article  CAS  Google Scholar 

  39. Zellerhoff, N., Himmelbach, A., Dong, W., Bieri, S., Schaffrath, U., & Schweizer, P. (2010). Nonhost resistance of barley to different fungal pathogens is associated with largely distinct, quantitative transcriptional responses. Plant Physiology, 152, 2053–2066.

    Article  CAS  Google Scholar 

  40. Zhou, Y. L., Xu, M. R., Zhao, M. F., Xie, X. W., Zhu, L. H., Fu, B. Y., et al. (2010). Genome-wide gene responses in a transgenic rice line carrying the maize resistance gene Rxo1 to the rice bacterial streak pathogen, Xanthomonas oryzae pv. oryzicola. BMC Genomics., 11, 78–88.

    Article  Google Scholar 

  41. Senthil, G., Liu, H., Puram, V. G., Clark, A., Stromberg, A., & Goodin, M. M. (2005). Specific and common changes in Nicotiana benthamiana gene expression in response to infection by enveloped viruses. Journal of General Virology, 86, 2615–2625.

    Article  CAS  Google Scholar 

  42. Aranda, M. A., Escaler, M., Wang, D., & Maule, A. J. (1996). Induction of HSP70 and polyubiquitin expression associated with plant virus replication. Proceedings of the National Academy of Sciences of the United States of America, 93, 15289–15293.

    Article  CAS  Google Scholar 

  43. Aranda, M., & Maule, A. (1998). Virus-induced host gene shutoff in animals and plants. Virology, 243, 261–267.

    Article  CAS  Google Scholar 

  44. Whitham, S. A., Quan, S., Chang, H. S., Cooper, B., Estes, B., Zhu, T., et al. (2003). Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. The Plant Journal, 33, 271–283.

    Article  CAS  Google Scholar 

  45. Qanungo, K. R., Shaji, D., Mathur, M., & Banerjee, A. K. (2004). Two RNA polymerase complexes from vesicular stomatitis virus-infected cells that carry out transcription and replication of genome RNA. Proceedings of the National Academy of Sciences of the United States of America, 101, 5952–5957.

    Article  CAS  Google Scholar 

  46. Carr, T., Wang, Y., Huang, Z., Yeakley, J. M., Fan, J. B., & Whitham, S. (2006). Tobamovirus infection is independent of HSP101 mRNA induction and protein expression. Virus Research, 121, 33–41.

    Article  CAS  Google Scholar 

  47. Chen, W., Provart, N., Glazebrook, J., Katagiri, F., Chang, H. S., Eulgem, T., et al. (2002). Expression profile matrix of Arabidopsis transcription factor genes implies their putative functions in response to environmental stresses. Plant Cell., 14, 559–574.

    Article  CAS  Google Scholar 

  48. Huang, Z., Yeakley, J. M., Garcia, E. W., Holdridge, J. D., Fan, J. B., & Whitham, S. A. (2005). Salicylic acid-dependent expression of host genes in compatible Arabidopsis-virus interactions. Plant Physiology, 137, 1147–1159.

    Article  CAS  Google Scholar 

  49. Itaya, A., Matsuda, Y., Gonzales, R. A., Nelson, R. S., & Ding, B. (2002). Potato spindle tuber viroid strains of different pathogenicity induces and suppresses expression of common and unique genes in infected tomato. Molecular Plant-Microbe Interactions, 15, 990–999.

    Article  CAS  Google Scholar 

  50. Huitema, E., Vleeshouwers, V., Francis, D., & Kamoun, S. (2003). Active defence responses associated with non-host resistance of Arabidopsis thaliana to the oomycete pathogen Phytophthora infestans. Molecular Plant Pathology, 4, 487–500.

    Article  CAS  Google Scholar 

  51. Tao, Y., Xie, Z., Chen, W., Glazebrook, J., Chang, H., Han, B., et al. (2003). Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell., 15, 317–330.

    Article  CAS  Google Scholar 

  52. Golem, S., & Culver, J. (2003). Tobacco mosaic virus induced alterations in the gene expression profile of Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 16, 681–688.

    Article  CAS  Google Scholar 

  53. Zimmerli, L., Stein, M., Lipka, V., Schulze-Lefert, P., & Somerville, S. (2004). Host and non-host pathogens elicit different jasmonate/ethylene responses in Arabidopsis. The Plant Journal, 40, 633–646.

    Article  CAS  Google Scholar 

  54. Marathe, R., Guan, Z., Anandalakshmi, R., Zhao, H., & DineshKumar, S. (2004). Study of Arabidopsis thaliana resistome in response to cucumber mosaic virus infection using whole genome microarray. Plant Molecular Biology, 55, 501–520.

    Article  CAS  Google Scholar 

  55. Couldridge, C., Newbury, H. J., Ford-Lloyd, B., Bale, J., & Pritchard, J. (2007). Exploring plant responses to aphid feeding using a full Arabidopsis microarray reveals a small number of genes with significantly altered expression. Bulletin of Entomological Research, 97, 523–532.

    Article  CAS  Google Scholar 

  56. Kusnierczyk, A., Winge, P., Jørstad, T. S., Troczynska, J., Rossiter, J. T., & Bones, A. M. (2008). Towards global understanding of plant defense against aphids - timing and dynamics of early Arabidopsis defense responses to cabbage aphid (Brevicoryne brassicae) attack. Plant, Cell & Environment, 31, 1097–1115.

    Article  CAS  Google Scholar 

  57. Babu, M., Griffiths, J. S., Huang, T., & Wang, A. (2008). Altered gene expression changes in Arabidopsis leaf tissues and protoplasts in response to plum pox virus infection. BMC Genomics., 9, 325.

    Article  Google Scholar 

  58. Luo, M., Dang, P., Bausher, M., Holbrook, C., Lee, R., Lynch, R., et al. (2005). Identification of transcripts involved in resistance responses to leaf spot disease caused by Cercosporidium personatum in peanut (Arachis hypogaea). Phytopathology, 95, 381–387.

    Article  CAS  Google Scholar 

  59. Zhao, J., Wang, J., An, L., Doerge, R. W., Chen, Z. J., Grau, C. R., et al. (2007). Analysis of gene expression profiles in response to Sclerotinia sclerotiorum in Brassica napus. Planta., 227, 13–24.

    Article  CAS  Google Scholar 

  60. Schenk, P. M., Thomas-Hall, S., Nguyen, A. V., Manners, J. M., Kazan, K., & Spangenberg, G. (2008). Identification of plant defense genes in canola using Arabidopsis cDNA microarrays. Plant Biology, 10, 539–547.

    Article  CAS  Google Scholar 

  61. Moy, P., Qutob, D., Chapman, B., Atkinson, I., & Gijzen, M. (2004). Patterns of gene expression upon infection of soybean plants by Phytophthora sojae. Molecular Plant-Microbe Interactions, 17, 1051–1062.

    Article  CAS  Google Scholar 

  62. Zou, J., Rodriguez-Zas, S., Li, M. A. M., Zhu, J., Gonzalez, D., Vodkin, L., et al. (2005). Expression profiling soybean response to Pseudomonas syringae reveals new defense-related genes and rapid HR-specific downregulation of photosynthesis. Molecular Plant-Microbe Interactions, 8, 1161–1174.

    Article  Google Scholar 

  63. van de Mortel, M., Recknor, J. C., Graham, M. A., Nettleton, D., Dittman, J. D., Nelson, R. T., et al. (2007). Distinct biphasic mRNA changes in response to Asian soybean rust infection. Molecular Plant-Microbe Interactions, 20, 887–999.

    Article  Google Scholar 

  64. Babu, M., Gagarinova, A. G., Brandle, J. E., & Wang, A. (2008). Association of the transcriptional response of soybean plants with soybean mosaic virus systemic infection. Journal of General Virology, 89, 1069–1080.

    Article  CAS  Google Scholar 

  65. Bilgin, D. D., Aldea, M., O’Neill, B. F., Benitez, M., Li, M., Clough, S. J., et al. (2008). Elevated ozone alters soybean–virus interaction. Molecular Plant-Microbe Interactions, 21, 1297–1308.

    Article  CAS  Google Scholar 

  66. Casteel, C. L., O’Neill, B. F., Zavala, J. A., Bilgin, D. D., Berenbaum, M. R., & DeLucia, E. H. (2008). Transcriptional profiling reveals elevated CO2 and elevated O3 alter resistance of soybean (Glycine max) to Japanese beetles (Popillia japonica). Plant, Cell & Environment, 31, 419–434.

    Article  CAS  Google Scholar 

  67. Brechenmacher, L., Kim, M.-Y., Benitez, M., Li, M., Joshi, T., Calla, B., et al. (2008). Transcription profiling of soybean nodulation by Bradyrhizobium japonicum. Molecular Plant-Microbe Interactions, 21, 631–645.

    Article  CAS  Google Scholar 

  68. Li, Y., Zou, J., Li, M., Bilgin, D. D., Vodkin, L. O., Hartman, G. L., et al. (2008). Soybean defense responses to the soybean aphid. New Phytologist, 179, 185–195.

    Article  CAS  Google Scholar 

  69. Zierold, U., Scholz, U., & Schweizer, P. (2005). Transcriptome analysis of mlo-mediated resistance in the epidermis of barley. Molecular Plant Pathology, 6, 139–151.

    Article  CAS  Google Scholar 

  70. McGrann, G. R. D., Townsend, B. J., Antoniw, J. F., Asher, M. J. C., & Mutasa-Gottgens, E. S. (2009). Barley elicits a similar early basal defense response during host and non-host interactions with Polymyxa root parasites. European Journal of Plant Pathology, 123, 5–15.

    Article  CAS  Google Scholar 

  71. Delp, G., Gradin, T., Ahman, I., & Jonsson, L. M. V. (2009). Microarray analysis of the interaction between the aphid Rhopalosiphum padi and host plants reveals both differences and similarities between susceptible and partially resistant barley lines. Mol Genet Genomics., 281, 233–248.

    Article  CAS  Google Scholar 

  72. Chen, X., Niks, R. E., Hedley, R. E., Morris, J., Druka, A., Marcel, T. C., et al. (2010). Differential gene expression in nearly isogenic lines with QTL for partial resistance to Puccinia hordei in barley. BMC Genomics., 11, 629.

    Article  Google Scholar 

  73. Wichmann, F., Asp, T., Widmer, F., & Kolliker, R. (2011). Transcriptional responses of Italian ryegrass during interaction with Xanthomonas translucens pv. graminis reveal novel candidate genes for bacterial wilt resistance. Theoretical and Applied Genetics, 122, 567–579.

    Article  Google Scholar 

  74. Zhao, Y., Thilmony, R., Bender, C., Schaller, A., He, S., & Howe, G. (2003). Virulence systems of Pseudomonas syringae pv. tomato promotes bacterial speck disease in tomato by targeting the jasmonate signaling pathway. The Plant Journal, 36, 485–499.

    Article  CAS  Google Scholar 

  75. Gibly, A., Bonshtien, A., Balaji, V., Debbie, P., Martin, G., & Sessa, G. (2004). Identification and expression profiling of tomato genes differentially regulated during a resistance response to Xanthomonas campestris pv. vesicatoria. Molecular Plant-Microbe Interactions, 17, 1212–1222.

    Article  CAS  Google Scholar 

  76. Lopez, C., Soto, M., Restrepo, S., Piegu, B., Cooke, R., Delseny, M., et al. (2005). Gene expression profile in response to Xanthomonas axonopodis pv. manihotis infection in cassava using a cDNA microarray. Plant Molecular Biology, 57, 393–410.

    Article  CAS  Google Scholar 

  77. Schmidt, D. D., Voelckel, C., Hartl, M., Schmidt, S., & Baldwin, I. T. (2005). Specificity in ecological interactions: Attack from the same lepidopteran herbivore results in species-specific transcriptional responses in two solanaceous host plants. Plant Physiology, 138, 1763–1773.

    Article  CAS  Google Scholar 

  78. Voelckel, C., & Baldwin, I. T. (2004). Herbivore-induced plant vaccination. Part II. Array-studies reveal the transience of herbivorespecific transcriptional imprints and a distinct imprint from stress combinations. The Plant Journal, 38, 650–663.

    Article  CAS  Google Scholar 

  79. Ralph, S. G., Yueh, H., Friedmann, M., Aeschliman, D., Zeznik, J. A., Nelson, C. C., et al. (2006). Conifer defence against insects: Microarray gene expression profiling of Sitka spruce (Picea sitchensis) induced by mechanical wounding or feeding by spruce budworms (Choristoneura occidentalis) or white pine weevils (Pissodes strobi) reveals large-scale changes of the host transcriptome. Plant, Cell & Environment, 29, 1545–1570.

    Article  Google Scholar 

  80. Ralph, S., Oddy, C., Cooper, D., Yueh, H., Jancsik, S., Kolosov, N., et al. (2006). Genomics of hybrid poplar (Populus trichocarpa × deltoides) interacting with forest tent caterpillars (Malacosoma disstria): Normalized and full-length cDNA libraries, expressed sequence tags, and a cDNA microarray for the study of insect-induced defences in poplar. Molecular Ecology, 15, 1275–1297.

    Article  Google Scholar 

  81. Rinaldi, C., Kohler, A., Frey, P., Duchaussoy, F., Ningre, N., Couloux, A., et al. (2007). Transcript profiling of poplar leaves upon infection with compatible and incompatible strains of the foliar rust Melampsora larici-populina. Plant Physiology, 144, 347–366.

    Article  CAS  Google Scholar 

  82. Restrepo, S., Myers, K., Pozo, Od., Martin, G., Hart, A., Buell, C., et al. (2005). Gene profiling of a compatible interaction between Phytotphthora infestans and Solanum tuberosum suggests a role for carbonic anhydrase. Molecular Plant-Microbe Interactions, 18, 913–922.

    Article  CAS  Google Scholar 

  83. Lawrence, S. D., Novak, N. G., Ju, C. J.-T., & Cooke, J. E. K. (2008). Potato, Solanum tuberosum, defense against colorado potato beetle, Leptinotarsa decemlineata (Say): Microarray gene expression profiling of potato by colorado potato beetle regurgitant treatment of wounded leaves. Journal of Chemical Ecology, 34, 1013–1025.

    Article  CAS  Google Scholar 

  84. Baebler, S., Krecic-Stres, H., Rotter, A., Kogovsek, P., Cankar, K., Kok, E. J., et al. (2009). PVYNTN elicits a diverse gene expression response in different potato genotypes in the first 12 h after inoculation. Molecular Plant Pathology, 10, 263–275.

    Article  CAS  Google Scholar 

  85. Bruggmann, R., Abderhalden, O., Reymond, P., & Dudler, R. (2005). Analysis of epidermis- and mesophyll-specific transcript accumulation in powdery mildew-inoculated wheat leave. Plant Molecular Biology, 58, 247–267.

    Article  CAS  Google Scholar 

  86. Figueiredo, A., Fortes, A. M., Ferreira, S., Sebastiana, M., Choi, Y. H., Sousa, L., et al. (2008). Transcriptional and metabolic profiling of grape (Vitis vinifera L.) leaves unravel possible innate resistance against pathogenic fungi. Journal of Experimental Botany, 59, 3371–3381.

    Article  CAS  Google Scholar 

  87. Brazma, A., Parkinson, H., Sarkans, U., Shojatalab, M., Vilo, J., Abeygunawardena, N., et al. (2003). ArrayExpress—a public repository for microarray gene expression data at the EBI. Nucleic Acids Research, 31, 68–71.

    Article  CAS  Google Scholar 

  88. Baginsky, S., Hennig, L., Zimmermann, P., & Gruissem, W. (2010). Gene expression analysis, proteomics, and network discovery. Plant Physiology, 152, 402–410.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

TD Lodha is thankful to the Department of Biotechnology, Govt. of India, for providing financial assistance. Authors are thankful to Dr. Tapas Kumar Ghose, Division of Plant Biology, Bose Institute, for his insightful discussion on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Basak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lodha, T.D., Basak, J. Plant–Pathogen Interactions: What Microarray Tells About It?. Mol Biotechnol 50, 87–97 (2012). https://doi.org/10.1007/s12033-011-9418-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-011-9418-2

Keywords

Navigation