Skip to main content

Advertisement

Log in

Revolutionizing cancer treatment: comprehensive insights into immunotherapeutic strategies

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Cancer, characterized by the uncontrolled proliferation of aberrant cells, underscores the imperative for innovative therapeutic approaches. Immunotherapy has emerged as a pivotal constituent in cancer treatment, offering improved prognostic outcomes for a substantial patient cohort. Noteworthy for its precision, immunotherapy encompasses strategies such as adoptive cell therapy and checkpoint inhibitors, orchestrating the immune system to recognize and selectively target malignant cells. Exploiting the specificity of the immune response renders immunotherapy efficacious, as it selectively targets the body’s immune milieu. Diverse mechanisms underlie cancer immunotherapies, leading to distinct toxicity profiles compared to conventional treatments. A remarkable clinical stride in the anticancer resources is immunotherapy. Remarkably, certain recalcitrant cancers like skin malignancies exhibit resistance to radiation or chemotherapy, yet respond favorably to immunotherapeutic interventions. Notably, combination therapies involving chemotherapy and immunotherapy have exhibited synergistic effects, enhancing overall therapeutic efficacy. Understanding the pivotal role of immunotherapy elucidates its complementary value, bolstering the therapeutic landscape. In this review, we elucidate the taxonomy of cancer immunotherapy, encompassing adoptive cell therapy and checkpoint inhibitors, while scrutinizing their distinct adverse event profiles. Furthermore, we expound on the unprecedented potential of immunogenic vaccines to bolster the anticancer immune response. This comprehensive analysis underscores the significance of immunotherapy in modern oncology, unveiling novel prospects for tailored therapeutic regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets were collected and summarized scientifically from available literature. No new data were created or analyzed in this study therefore; data sharing is not applicable to this article. However, the data in form of tables and figures created during the review preparation are available from the corresponding author on reasonable request.

Abbreviations

4-1BB:

TNFR (Tumor necrosis factor receptor) superfamily receptor

ADCC:

Antibody-dependent cellular cytotoxicity

ADR:

Adverse drug reaction(s)

ALL:

Acute lymphoblastic leukemia

APC:

Antigen presenting cell(s)

BCMA:

B cell maturation antigen

CAR:

Chimeric antigen receptor

CCR4:

Carbon catabolite repression 4

CCR8:

C–C Motif Chemokine Receptor 8

CD19:

Cluster of differentiation 19

CD20:

Cluster of differentiation 20

CD22:

Cluster of differentiation 22

CD25:

Cluster of differentiation 25

CD27:

Cluster of differentiation 27

CD3:

Cluster of differentiation 3

CD30:

Cluster of differentiation 30

CD33:

Cluster of differentiation 33

CD38:

Cluster of differentiation 38

CD40:

Cluster of differentiation 40

CD52:

Cluster of differentiation 52

CD79B:

Cluster of differentiation 79B

CDC:

Complement dependant cytotoxicity

CEA:

Carcinoembryonic antigen

CLL:

Chronic lymphoblastic leukemia

c-MET:

C-Mesenchymal-epithelial transition

CML:

Chronic myeloid leukemia

CTL:

Cytotoxic T lymphocyte(s)

CTLA4:

Cytotoxic T-lymphocyte–associated antigen 4

DC:

Dendritic cell(s)

EGFR:

Epidermal growth factor receptor

GD2:

Disialoganglioside GD2

GDF15:

Growth differentiation factor 15

gp100:

Glycoprotein 100

GP88:

Progranulin

HER2:

Human epidermal growth factor receptor 2

HER3:

Human epidermal growth factor receptor 3

hK2:

Human Kallikrein-2

ICI:

Immune checkpoint inhibitor(s)

IFN B:

Interferon β

IFN y:

Interferon γ

IFN a:

Interferon α

IL11:

Interleukin 11

IL12:

Interleukin 12

IL2:

Interleukin 2

IL21:

Interleukin 21

IL7:

Interleukin 7

mAb:

Monoclonal antibody(ies)

MMAE:

Monomethyl auristatin E

NHL:

Non-Hodgkins lymphoma

NK:

Natural killer cell(s)

NKG2D:

Natural killer group 2D

PBLS:

Peripheral blood lymphocytes

PD1:

Programmed cell death protein 1

PDGFRa:

Platelet derived growth factor receptor alpha

PDL1:

Programmed cell death ligand 1

PSMA:

Prostate specific membrane antigen

RIT:

Radioimmunotherapy

ROR1:

Receptor tyrosine kinase-like orphan receptor 1

SLAMF7:

Signaling lymphocytic activation molecule family 7

TCR:

T cell receptor

TDM1:

Trastuzumab emtansine

TROP2:

Trophoblast antigen 2

TVEC:

Talimogene laherparepvec

VEGF:

Vascular endothelial growth factor

VEGFR2:

Vascular endothelial growth factor receptor 2

WHO:

World Health Organization

References

  1. Chhikara BS, Parang K. Global cancer statistics 2022: the trends projection analysis. Chem Biol Lett. 2022;10(1):451.

    Google Scholar 

  2. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA: A Cancer J Clin. 2023;73(1):17–48.

    Google Scholar 

  3. Hausman DM. What is cancer? Perspect Biol Med. 2019;62(4):778–84.

    Article  PubMed  Google Scholar 

  4. Seker-Polat F, Pinarbasi Degirmenci N, Solaroglu I, Bagci-Onder T. Tumor cell infiltration into the brain in glioblastoma: from mechanisms to clinical perspectives. Cancers. 2022;14(2):443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hoos A. Development of immuno-oncology drugs—from CTLA4 to PD1 to the next generations. Nat Rev Drug Discov. 2016;15(4):235–47.

    Article  CAS  PubMed  Google Scholar 

  6. Kumar AR, Devan AR, Nair B, Vinod BS, Nath LR. Harnessing the immune system against cancer: current immunotherapy approaches and therapeutic targets. Mol Biol Rep. 2021;48(12):8075–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Oldham RK. Immunotherapy: old concepts and new approaches. 1987 [cited 11/23/2023]. In: Present status of non-toxic concepts in cancer: international symposium on the present status of non-toxic concepts in cancer, European Academy, Nonnweiler/Trier, April 1986. S. Karger AG, [cited 11/23/2023];. https://doi.org/10.1159/000413697.

  8. Bondhopadhyay B, Sisodiya S, Chikara A, Khan A, Tanwar P, Afroze D, et al. Cancer immunotherapy: a promising dawn in cancer research. Am J Blood Res. 2020;10(6):375–85.

    PubMed  PubMed Central  Google Scholar 

  9. Bunimovich-Mendrazitsky S, Shochat E, Stone L. Mathematical model of BCG immunotherapy in superficial bladder cancer. Bull Math Biol. 2007;69(6):1847–70.

    Article  PubMed  Google Scholar 

  10. La Thangue NB, Kerr DJ. Predictive biomarkers: a paradigm shift towards personalized cancer medicine. Nat Rev Clin Oncol. 2011;8(10):587–96.

    Article  PubMed  Google Scholar 

  11. Friedman EJ. Immune modulation by ionizing radiation and its implications for cancer immunotherapy. Curr Pharm Des. 2002;8(19):1765–80.

    Article  CAS  PubMed  Google Scholar 

  12. Kim R. Chapter 2—cancer immunoediting: from immune surveillance to immune escape. In: Prendergast GC, Jaffee EM, editors. Cancer immunotherapy. Burlington: Academic Press; 2007. p. 9–27.

    Chapter  Google Scholar 

  13. Zahavi D, Weiner L. Monoclonal antibodies in cancer therapy. Antibodies. 2020;9(3):34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aggarwal D, Yang J, Salam MA, Sengupta S, Al-Amin MY, Mustafa S, et al. Antibody-drug conjugates: the paradigm shifts in the targeted cancer therapy. Front Immunol. 2023;14.

  15. Taefehshokr S, Parhizkar A, Hayati S, Mousapour M, Mahmoudpour A, Eleid L, et al. Cancer immunotherapy: challenges and limitations. Pathol - Res Pract. 2022;229: 153723.

    Article  CAS  PubMed  Google Scholar 

  16. Camp FA, Slansky JE. Implications of antigen selection on T cell-based immunotherapy. Pharmaceuticals. 2021;14(10):993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maruthamuthu MK, Rudge SR, Ardekani AM, Ladisch MR, Verma MS. Process analytical technologies and data analytics for the manufacture of monoclonal antibodies. Trends Biotechnol. 2020;38(10):1169–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wognum B, Lee T. Simultaneous cloning and selection of hybridomas and transfected cell lines in semisolid media. In: Helgason CD, Miller CL, editors. Basic cell culture protocols. Totowa: Humana Press; 2013. p. 133–49.

    Chapter  Google Scholar 

  19. Phan S, Walmer A, Shaw EW, Chai Q. High-throughput profiling of antibody self-association in multiple formulation conditions by PEG stabilized self-interaction nanoparticle spectroscopy. mAbs. 2022;14(1):2094750.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Brennan FR, Cavagnaro J, McKeever K, Ryan PC, Schutten MM, Vahle J, et al. Safety testing of monoclonal antibodies in non-human primates: case studies highlighting their impact on human risk assessment. mAbs. 2018;10(1):1–17.

    Article  CAS  PubMed  Google Scholar 

  21. Qiu X-Q, Wang H, Cai B, Wang L-L, Yue S-T. Small antibody mimetics comprising two complementarity-determining regions and a framework region for tumor targeting. Nat Biotechnol. 2007;25(8):921–9.

    Article  CAS  PubMed  Google Scholar 

  22. Ulitzka M, Carrara S, Grzeschik J, Kornmann H, Hock B, Kolmar H. Engineering therapeutic antibodies for patient safety: tackling the immunogenicity problem. Protein Eng Des Select. 2020;33:025.

    Article  Google Scholar 

  23. Yang X-D, Jia X-C, Corvalan JRF, Wang P, Davis CG. Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer therapy. Crit Rev Oncol Hematol. 2001;38(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  24. Lewis AM, Varghese S, Xu H, Alexander HR. Interleukin-1 and cancer progression: the emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment. J Transl Med. 2006;4(1):48.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schmitt AM, Herbrand AK, Fox CP, Bakunina K, Bromberg JEC, Cwynarski K, et al. Rituximab in primary central nervous system lymphoma—a systematic review and meta-analysis. Hematol Oncol. 2019;37(5):548–57.

    Article  CAS  PubMed  Google Scholar 

  26. Maadi H, Soheilifar MH, Choi W-S, Moshtaghian A, Wang Z. Trastuzumab mechanism of action; 20 years of research to unravel a dilemma. Cancers. 2021;13(14):3540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Taberna M, Oliva M, Mesía R. Cetuximab-containing combinations in locally advanced and recurrent or metastatic head and neck squamous cell carcinoma. Front Oncol. 2019;9:383.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rohaan MW, Borch TH, van den Berg JH, Met Ö, Kessels R, Geukes Foppen MH, et al. Tumor-infiltrating lymphocyte therapy or ipilimumab in advanced melanoma. N Engl J Med. 2022;387(23):2113–25.

    Article  CAS  PubMed  Google Scholar 

  29. Kempin S, Sun Z, Kay Neil E, Paietta Elisabeth M, Mazza Joseph J, Ketterling Rhett P, et al. Pentostatin, cyclophosphamide, and rituximab followed by alemtuzumab for relapsed or refractory chronic lymphocytic leukemia: a phase 2 trial of the ECOG-Acrin Cancer Research Group (E2903). Acta Haematol. 2019;142(4):224–32.

    Article  CAS  PubMed  Google Scholar 

  30. Fu Z, Li S, Han S, Shi C, Zhang Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct Target Ther. 2022;7(1):93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ducry L, Stump B. Antibody−drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug Chem. 2010;21(1):5–13.

    Article  CAS  PubMed  Google Scholar 

  32. Hunter FW, Barker HR, Lipert B, Rothé F, Gebhart G, Piccart-Gebhart MJ, et al. Mechanisms of resistance to trastuzumab emtansine (T-DM1) in HER2-positive breast cancer. Br J Cancer. 2020;122(5):603–12.

    Article  CAS  PubMed  Google Scholar 

  33. Kantarjian HM, DeAngelo DJ, Stelljes M, Liedtke M, Stock W, Gökbuget N, et al. Inotuzumab ozogamicin versus standard of care in relapsed or refractory acute lymphoblastic leukemia: final report and long-term survival follow-up from the randomized, phase 3 INO-VATE study. Cancer. 2019;125(14):2474–87.

    Article  CAS  PubMed  Google Scholar 

  34. Ansell SM, Radford J, Connors JM, Długosz-Danecka M, Kim W-S, Gallamini A, et al. Overall survival with brentuximab vedotin in stage III or IV Hodgkin’s lymphoma. N Engl J Med. 2022;387(4):310–20.

    Article  CAS  PubMed  Google Scholar 

  35. Othman T, Lowsky R, Richman C, Hoeg R, Abedi M, Tuscano J. Yttrium-90 ibritumomab tiuxetan plus ATG/TLI for allogeneic hematopoietic cell transplantation in non-Hodgkin lymphoma. Bone Marrow Transpl. 2023;58:1143–5.

    Article  CAS  Google Scholar 

  36. Zelenetz AD, Popplewell LL, Noy A, Horner TJ, Lin TS, Donnelly G, et al. Phase 2 study of iodine-131 tositumomab plus chemotherapy in patients with previously untreated mantle-cell lymphoma. Clin Lymphoma Myeloma Leuk. 2020;20(11):749-56.e1.

    Article  PubMed  Google Scholar 

  37. Sartor O, de Bono J, Chi KN, Fizazi K, Herrmann K, Rahbar K, et al. Lutetium-177–PSMA-617 for metastatic castration-resistant prostate cancer. N Engl J Med. 2021;385(12):1091–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Castellino SM, Pei Q, Parsons SK, Hodgson D, McCarten K, Horton T, et al. Brentuximab vedotin with chemotherapy in pediatric high-risk Hodgkin’s lymphoma. N Engl J Med. 2022;387(18):1649–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wedam S, Fashoyin-Aje L, Gao X, Bloomquist E, Tang S, Sridhara R, et al. FDA approval summary: ado-trastuzumab emtansine for the adjuvant treatment of HER2-positive early breast cancer. Clin Cancer Res. 2020;26(16):4180–5.

    Article  CAS  PubMed  Google Scholar 

  40. Hitzler J, Estey E. Gemtuzumab ozogamicin in acute myeloid leukemia: act 2, with perhaps more to come. Haematologica. 2019;104(1):7–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Keam SJ. Trastuzumab deruxtecan: first approval. Drugs. 2020;80(5):501–8.

    Article  CAS  PubMed  Google Scholar 

  42. Horwitz SM, Scarisbrick JJ, Dummer R, Whittaker S, Duvic M, Kim YH, et al. Randomized phase 3 ALCANZA study of brentuximab vedotin vs physician’s choice in cutaneous T-cell lymphoma: final data. Blood Adv. 2021;5(23):5098–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ansar W, Ghosh S. Monoclonal antibodies: a tool in clinical research. Indian J Clin Med. 2013;4:S11968.

    Article  Google Scholar 

  44. Gaballa MR, Banerjee P, Milton DR, Jiang X, Ganesh C, Khazal S, et al. Blinatumomab maintenance after allogeneic hematopoietic cell transplantation for B-lineage acute lymphoblastic leukemia. Blood. 2022;139(12):1908–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shimazu Y, Kitawaki T, Kondo T, Takaori-Kondo A. Pretreatment blast-to-lymphocyte ratio as a prognostic marker for CD19/CD3-bispecific T cell-engaging antibodies (blinatumomab) treatment against relapsed or refractory B-precursor acute lymphoblastic leukemia. Cancer Immunol Immunother. 2023;72(11):3861–5.

    Article  CAS  PubMed  Google Scholar 

  46. Hosseini I, Gadkar K, Stefanich E, Li C-C, Sun LL, Chu Y-W, et al. Mitigating the risk of cytokine release syndrome in a Phase I trial of CD20/CD3 bispecific antibody mosunetuzumab in NHL: impact of translational system modeling. npj Syst Biol Appl. 2020;6(1):28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brown PA, Ji L, Xu X, Devidas M, Hogan LE, Borowitz MJ, et al. Effect of postreinduction therapy consolidation with blinatumomab vs chemotherapy on disease-free survival in children, adolescents, and young adults with first relapse of B-cell acute lymphoblastic leukemia: a randomized clinical trial. JAMA. 2021;325(9):833–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Queudeville M, Ebinger M. Blinatumomab in pediatric acute lymphoblastic leukemia—from salvage to first line therapy (a systematic review). J Clin Med. 2021;10(12):2544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tian Z, Liu M, Zhang Y, Wang X. Bispecific T cell engagers: an emerging therapy for management of hematologic malignancies. J Hematol Oncol. 2021;14(1):75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hipp S, Tai YT, Blanset D, Deegen P, Wahl J, Thomas O, et al. A novel BCMA/CD3 bispecific T-cell engager for the treatment of multiple myeloma induces selective lysis in vitro and in vivo. Leukemia. 2017;31(8):1743–51.

    Article  CAS  PubMed  Google Scholar 

  51. Wu J, Fu J, Zhang M, Liu D. Blinatumomab: a bispecific T cell engager (BiTE) antibody against CD19/CD3 for refractory acute lymphoid leukemia. J Hematol Oncol. 2015;8(1):104.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yu J, Wang W, Huang H. Efficacy and safety of bispecific T-cell engager (BiTE) antibody blinatumomab for the treatment of relapsed/refractory acute lymphoblastic leukemia and non-Hodgkin’s lymphoma: a systemic review and meta-analysis. Hematology. 2019;24(1):199–207.

    Article  CAS  PubMed  Google Scholar 

  53. Kujawski M, Li L, Bhattacharya S, Wong P, Lee W-H, Williams L, et al. Generation of dual specific bivalent BiTEs (dbBIspecific T-cell engaging antibodies) for cellular immunotherapy. BMC Cancer. 2019;19(1):882.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Meckler JF, Levis DJ, Vang DP, Tuscano JM. A Novel bispecific T-cell engager (BiTE) targeting CD22 and CD3 has both in vitro and in vivo activity and synergizes with blinatumomab in an acute lymphoblastic leukemia (ALL) tumor model. Cancer Immunol Immunother. 2023;72(9):2939–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kirtane K, Elmariah H, Chung CH, Abate-Daga D. Adoptive cellular therapy in solid tumor malignancies: review of the literature and challenges ahead. J Immunother Cancer. 2021;9(7).

  56. Li D, Li X, Zhou W-L, Huang Y, Liang X, Jiang L, et al. Genetically engineered T cells for cancer immunotherapy. Signal Transduct Target Ther. 2019;4(1):35.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sabry M, Lowdell MW. Killers at the crossroads: the use of innate immune cells in adoptive cellular therapy of cancer. Stem Cells Transl Med. 2020;9(9):974–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Feldman L, Brown C, Badie B. Chimeric antigen receptor (CAR) T cell therapy for glioblastoma. NeuroMol Med. 2022;24(1):35–40.

    Article  CAS  Google Scholar 

  59. Neff NV. Redesigned CAR T cells: a step toward reducing toxic side effects. Oncol Times. 2020;42(S10):3.

    Google Scholar 

  60. Noaks E, Peticone C, Kotsopoulou E, Bracewell DG. Enriching leukapheresis improves T cell activation and transduction efficiency during CAR T processing. Mol Ther- Methods Clin Dev. 2021;20:675–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang X, Peticone C, Kotsopoulou E, Göttgens B, Calero-Nieto FJ. Single-cell transcriptome analysis of CAR T-cell products reveals subpopulations, stimulation, and exhaustion signatures. OncoImmunology. 2021;10(1):1866287.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Katz L, Chen YY, Gonzalez R, Peterson TC, Zhao H, Baltz RH. Synthetic biology advances and applications in the biotechnology industry: a perspective. J Ind Microbiol Biotechnol. 2018;45(7):449–61.

    Article  CAS  PubMed  Google Scholar 

  63. Ali S, Kjeken R, Niederlaender C, Markey G, Saunders TS, Opsata M, et al. The European Medicines Agency Review of Kymriah (Tisagenlecleucel) for the treatment of acute lymphoblastic leukemia and diffuse large B-cell lymphoma. Oncologist. 2020;25(2):e321–7.

    Article  PubMed  Google Scholar 

  64. Locke FL, Miklos DB, Jacobson CA, Perales M-A, Kersten M-J, Oluwole OO, et al. Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma. N Engl J Med. 2021;386(7):640–54.

    Article  PubMed  Google Scholar 

  65. Kim SP, Vale NR, Zacharakis N, Krishna S, Yu Z, Gasmi B, et al. Adoptive cellular therapy with autologous tumor-infiltrating lymphocytes and T-cell receptor-engineered T cells targeting common p53 neoantigens in human solid tumors. Cancer Immunol Res. 2022;10(8):932–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Clay TM, Custer MC, Sachs J, Hwu P, Rosenberg SA, Nishimura MI. Efficient transfer of a tumor antigen-reactive TCR to human peripheral blood lymphocytes confers anti-tumor reactivity. J Immunol. 1999;163(1):507–13.

    Article  CAS  PubMed  Google Scholar 

  67. Martinvalet D. The role of the mitochondria and the endoplasmic reticulum contact sites in the development of the immune responses. Cell Death Dis. 2018;9(3):336.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Suzman DL, Pelosof L, Rosenberg A, Avigan MI. Hepatotoxicity of immune checkpoint inhibitors: an evolving picture of risk associated with a vital class of immunotherapy agents. Liver Int. 2018;38(6):976–87.

    Article  PubMed  Google Scholar 

  69. Mohme M, Riethdorf S, Pantel K. Circulating and disseminated tumour cells—mechanisms of immune surveillance and escape. Nat Rev Clin Oncol. 2017;14(3):155–67.

    Article  CAS  PubMed  Google Scholar 

  70. Wang Y, Gu T, Tian X, Li W, Zhao R, Yang W, et al. A small molecule antagonist of PD-1/PD-L1 interactions acts as an immune checkpoint inhibitor for NSCLC and melanoma immunotherapy. Front Immunol. 2021;12: 654463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Quinn Z, Mao W, Xia Y, John R, Wan Y. Conferring receptors on recipient cells with extracellular vesicles for targeted drug delivery. Bioactive Mater. 2021;6(3):749–56.

    Article  CAS  Google Scholar 

  72. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Migden MR, Rischin D, Schmults CD, Guminski A, Hauschild A, Lewis KD, et al. PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N Engl J Med. 2018;379(4):341–51.

    Article  CAS  PubMed  Google Scholar 

  74. Hamilton G, Rath B. Avelumab: combining immune checkpoint inhibition and antibody-dependent cytotoxicity. Expert Opin Biol Ther. 2017;17(4):515–23.

    Article  CAS  PubMed  Google Scholar 

  75. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, et al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med. 2017;377(20):1919–29.

    Article  CAS  PubMed  Google Scholar 

  76. Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol. 2016;39(1):98–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lipson EJ, Drake CG. Ipilimumab: an anti-CTLA-4 antibody for metastatic melanoma. Clin Cancer Res. 2011;17(22):6958–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Markel AMSH. The history of vaccines and immunization: familiar patterns. New Chall Health Aff. 2005;24(3):611–21.

    Article  Google Scholar 

  79. Mahanty S, Prigent A, Garraud O. Immunogenicity of infectious pathogens and vaccine antigens. BMC Immunol. 2015;16(1):31.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Finn OJ. Cancer vaccines: between the idea and the reality. Nat Rev Immunol. 2003;3(8):630–41.

    Article  CAS  PubMed  Google Scholar 

  81. DeMaria PJ, Bilusic M. Cancer vaccines. Hematol Oncol Clin N Am. 2019;33(2):199–214.

    Article  Google Scholar 

  82. Li W-H, Li Y-M. Chemical strategies to boost cancer vaccines. Chem Rev. 2020;120(20):11420–78.

    Article  CAS  PubMed  Google Scholar 

  83. Wei XX, Kwak L, Hamid A, He M, Sweeney C, Flanders SC, et al. Outcomes in men with metastatic castration-resistant prostate cancer who received sipuleucel-T and no immediate subsequent therapy: experience at Dana Farber and in the PROCEED Registry. Prostate Cancer Prostatic Dis. 2022;25(2):314–9.

    Article  CAS  PubMed  Google Scholar 

  84. Raman SS, Hecht JR, Chan E. Talimogene laherparepvec: review of its mechanism of action and clinical efficacy and safety. Immunotherapy. 2019;11(8):705–23.

    Article  CAS  PubMed  Google Scholar 

  85. Propper DJ, Balkwill FR. Harnessing cytokines and chemokines for cancer therapy. Nat Rev Clin Oncol. 2022;19(4):237–53.

    Article  CAS  PubMed  Google Scholar 

  86. Holder PG, Lim SA, Huang CS, Sharma P, Dagdas YS, Bulutoglu B, et al. Engineering interferons and interleukins for cancer immunotherapy. Adv Drug Deliv Rev. 2022;182: 114112.

    Article  CAS  PubMed  Google Scholar 

  87. Eftimie R, Bramson JL, Earn DJD. Interactions between the immune system and cancer: a brief review of non-spatial mathematical models. Bull Math Biol. 2011;73(1):2–32.

    Article  PubMed  Google Scholar 

  88. Tumas S, Meldgaard TS, Vaaben TH, Suarez Hernandez S, Rasmussen AT, Vazquez-Uribe R, et al. Engineered E. coli Nissle 1917 for delivery of bioactive IL-2 for cancer immunotherapy. Sci Rep. 2023;13(1):12506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yang Y, Lundqvist A. Immunomodulatory effects of IL-2 and IL-15; implications for cancer immunotherapy. Cancers. 2020;12(12):3586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Briukhovetska D, Dörr J, Endres S, Libby P, Dinarello CA, Kobold S. Interleukins in cancer: from biology to therapy. Nat Rev Cancer. 2021;21(8):481–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Borden EC. Interferons α and β in cancer: therapeutic opportunities from new insights. Nat Rev Drug Discov. 2019;18(3):219–34.

    Article  CAS  PubMed  Google Scholar 

  92. Javidi-Sharifi N, Hobbs G. Future directions in chronic phase CML treatment. Curr Hematol Malig Rep. 2021;16(6):500–8.

    Article  PubMed  Google Scholar 

  93. De Novellis D, Giudice V, Ciccone V, Erra P, De Vita A, Picone F, et al. A frail hairy cell leukemia patient successfully treated with pegylated interferon-α-2A. J Clin Med. 2023;12(1):193.

    Article  Google Scholar 

  94. Albrecht JD, Ninosu N, Barry D, Albrecht T, Schaarschmidt ML, Goerdt S, et al. Non-pegylated and pegylated interferon alpha-2a in cutaneous T-cell lymphoma and the risk of severe ocular side-effects. Acta Dermato-Venereologica. 2022;102:00722.

    Article  Google Scholar 

  95. Hadi MA, Neoh CF, Zin RM, Elrggal ME, Cheema E. Pharmacovigilance: pharmacists’ perspective on spontaneous adverse drug reaction reporting. Integrated Pharm Res Pract. 2017;6:91–8.

    Google Scholar 

  96. Aldea M, Orillard E, Mansi L, Marabelle A, Scotte F, Lambotte O, et al. How to manage patients with corticosteroids in oncology in the era of immunotherapy? Eur J Cancer. 2020;141:239–51.

    Article  CAS  PubMed  Google Scholar 

  97. Greco A, Rizzo MI, De Virgilio A, Gallo A, Fusconi M, Ruoppolo G, et al. Churg-Strauss syndrome. Autoimmun Rev. 2015;14(4):341–8.

    Article  CAS  PubMed  Google Scholar 

  98. Kamin W, Kopp MV, Erdnuess F, Schauer U, Zielen S, Wahn U. Safety of anti-IgE treatment with omalizumab in children with seasonal allergic rhinitis undergoing specific immunotherapy simultaneously. Pediatric Allergy Immunol. 2010;21(1-Part-II):e160–5.

    Article  Google Scholar 

  99. Kotch C, Barrett D, Teachey DT. Tocilizumab for the treatment of chimeric antigen receptor T cell-induced cytokine release syndrome. Expert Rev Clin Immunol. 2019;15(8):813–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Winer A, Bodor JN, Borghaei H. Identifying and managing the adverse effects of immune checkpoint blockade. J Thorac Dis. 2018;10(Suppl 3):S480–9.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Harrington KJ, Puzanov I, Hecht JR, Hodi FS, Szabo Z, Murugappan S, et al. Clinical development of talimogene laherparepvec (T-VEC): a modified herpes simplex virus type-1–derived oncolytic immunotherapy. Expert Rev Anticancer Ther. 2015;15(12):1389–403.

    Article  CAS  PubMed  Google Scholar 

  102. Hauschild A, Gogas H, Tarhini A, Middleton MR, Testori A, Dréno B, et al. Practical guidelines for the management of interferon-α-2b side effects in patients receiving adjuvant treatment for melanoma. Cancer. 2008;112(5):982–94.

    Article  CAS  PubMed  Google Scholar 

  103. Olsen EA, Rosen ST, Vollmer RT, Variakojis D, Roenigk HH, Diab N, et al. Interferon alfa-2a in the treatment of cutaneous T cell lymphoma. J Am Acad Dermatol. 1989;20(3):395–407.

    Article  CAS  PubMed  Google Scholar 

  104. Naik PP. Current trends of immunotherapy in the treatment of cutaneous melanoma: a review. Dermatol Ther. 2021;11(5):1481–96.

    Article  Google Scholar 

  105. Zigler M, Villares GJ, Lev DC, Melnikova VO, Bar-Eli M. Tumor immunotherapy in melanoma. Am J Clin Dermatol. 2008;9(5):307–11.

    Article  PubMed  Google Scholar 

  106. Gotwals P, Cameron S, Cipolletta D, Cremasco V, Crystal A, Hewes B, et al. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat Rev Cancer. 2017;17(5):286–301.

    Article  CAS  PubMed  Google Scholar 

  107. Kamrani A, Hosseinzadeh R, Shomali N, Heris JA, Shahabi P, Mohammadinasab R, et al. New immunotherapeutic approaches for cancer treatment. Pathol - Res Pract. 2023;248: 154632.

    Article  CAS  PubMed  Google Scholar 

  108. Takayama T, Sekine T, Makuuchi M, Yamasaki S, Kosuge T, Yamamoto J, et al. Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial. The Lancet. 2000;356(9232):802–7.

    Article  CAS  Google Scholar 

  109. Hommes JW, Verheijden RJ, Suijkerbuijk KPM, Hamann D. Biomarkers of checkpoint inhibitor induced immune-related adverse events—a comprehensive review. Front Oncol. 2021;10: 585311.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Raja J, Ludwig JM, Gettinger SN, Schalper KA, Kim HS. Oncolytic virus immunotherapy: future prospects for oncology. J Immunother Cancer. 2018;6(1):140.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Chen H, Qiu X, Wang J, Wei H. Pharmacists’ role in multidisciplinary diagnosis and treatment in adverse reactions: a case report of interferon alfa-2b induced severe lupus. Medicine. 2022;101(50): e31997.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Menz BD, Johnson JL, Gillard DF, Chong W, Ward MB. The role of the pharmacist in optimizing cancer immunotherapy: a retrospective study of nivolumab adverse events. J Pharm Pract. 2019;34(3):386–96.

    Article  PubMed  Google Scholar 

  113. Gazzé G. Combination therapy for metastatic melanoma: a pharmacist’s role, drug interactions & complementary alternative therapies. Melanoma Manag. 2018;5(2):MMT07.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Meanwatthana J, Chantarasap P, Chuatrisorn I, Wiriya T, Jitawatanarat P. Pharmacist’s role in immune-related adverse events management: real-world incidence and risk evaluation from immunotherapy. Int J Pharm Pract. 2022;30(4):377–82.

    Article  CAS  PubMed  Google Scholar 

  115. Nisbeth Jensen M, Korning Zethsen K. Translation of patient information leaflets: trained translators and pharmacists-cum-translators—a comparison. Linguistica Antverpiensia New Ser – Themes Transl Stud. 2021;11.

  116. Jordan TA, Hennenfent JA, Lewin JJ III, Nesbit TW, Weber R. Elevating pharmacists’ scope of practice through a health-system clinical privileging process. Am J Health Syst Pharm. 2016;73(18):1395–405.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University for its support in library resources. The authors also extend their appreciation to L. M. College of Pharmacy, Ahmedabad, India for providing continuous library resources support throughout literature survey and data collection.

Funding

The authors declare that no funds, grants, or other support have been received from government or non-government agencies for the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

NRR, MRC, MM, RBP, BGP, PSP. NRR, MM, PSP—Manuscript first draft preparation and subsequent editing, Literature and data survey, Figures and diagram designing. RBP—Manuscript draft review and editing; Referencing. Table construction. MRC, BGP—Topic conception, Design of content and skeleton, Reviewed Manuscript first and subsequent draft; Figures and Tables conception.

Corresponding author

Correspondence to Bhupendra G. Prajapati.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest to report.

Ethical approval

Not applicable.

Institutional review board statement

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghani, N.R., Chorawala, M.R., Mahadik, M. et al. Revolutionizing cancer treatment: comprehensive insights into immunotherapeutic strategies. Med Oncol 41, 51 (2024). https://doi.org/10.1007/s12032-023-02280-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02280-7

Keywords

Navigation