Skip to main content

Advertisement

Log in

Intestinal epithelial SNAI1 promotes the occurrence of colorectal cancer by enhancing EMT and Wnt/β-catenin signaling

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is a prevalent cause of cancer and mortality on a global scale. SNAI1, a member of the zinc finger transcription superfamily, is a significant contributor to embryonic development and carcinogenesis through the process of epithelial–mesenchymal transition (EMT). While prior research utilizing CRC cells and clinical data has demonstrated that SNAI1 facilitates CRC progression through diverse mechanisms, the precise manner in which epithelial SNAI1 regulates CRC development in vivo remains unclear. In this study, colitis and colitis-associated CRC were induced through the use of intestinal epithelium-specific Snai1 knockout (Snai1 cKO) mice. Our findings indicate that Snai1 cKO mice exhibit a reduced susceptibility to acute colitis and colitis-associated CRC compared to control mice. Western-blot analysis of colon tissues revealed that Snai1 cKO mice exhibited a higher overall apoptosis level during tumor formation than control mice. No significant differences were observed in the activation of the classical p53 signaling pathway. However, Snai1 cKO mice exhibited weakened EMT and Wnt/β-catenin pathway activation. In summary, our study has provided evidence in vivo that the intestinal epithelial SNAI1 protein suppresses apoptosis, amplifies the EMT, and activates the Wnt/β-catenin signaling pathways in both early and late phases of CRC formation, thus promoting the development and progression of colitis-associated CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  2. Arnold M, Abnet CC, Neale RE, et al. Global burden of 5 major types of gastrointestinal cancer. Gastroenterology. 2020;159(1):335-49.e15.

    Article  PubMed  Google Scholar 

  3. Feletto E, Yu XQ, Lew JB, et al. Trends in colon and rectal cancer incidence in Australia from 1982 to 2014: analysis of data on over 375,000 cases. Cancer Epidemiol Biomark Prev. 2019;28(1):83–90.

    Article  Google Scholar 

  4. Brenner DR, Heer E, Sutherland RL, et al. National trends in colorectal cancer incidence among older and younger adults in Canada. JAMA Netw Open. 2019;2(7): e198090.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dekker E, Tanis PJ, Vleugels JLA, et al. Colorectal cancer. Lancet (Lond, Engl). 2019;394(10207):1467–80.

    Article  Google Scholar 

  6. Rawla P, Barsouk A, Hadjinicolaou AV, et al. Immunotherapies and targeted therapies in the treatment of metastatic colorectal cancer. Med Sci (Basel, Switzerland). 2019;7(8):83.

    CAS  Google Scholar 

  7. Paznekas WA, Okajima K, Schertzer M, et al. Genomic organization, expression, and chromosome location of the human SNAIL gene (SNAI1) and a related processed pseudogene (SNAI1P). Genomics. 1999;62(1):42–9.

    Article  CAS  PubMed  Google Scholar 

  8. Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002;3(3):155–66.

    Article  CAS  PubMed  Google Scholar 

  9. Swain SD, Grifka-Walk HN, Gripentrog J, et al. Slug and Snail have differential effects in directing colonic epithelial wound healing and partially mediate the restitutive effects of butyrate. Am J Physiol Gastrointest Liver Physiol. 2019;317(4):G531–44.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Du F, Yang R, Ma HL, et al. Expression of transcriptional repressor Slug gene in mouse endometrium and its effect during embryo implantation. Appl Biochem Biotechnol. 2009;157(2):346–55.

    Article  CAS  Google Scholar 

  11. Horvay K, Jardé T, Casagranda F, et al. Snai1 regulates cell lineage allocation and stem cell maintenance in the mouse intestinal epithelium. EMBO J. 2015;34(10):1319–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Horvay K, Casagranda F, Gany A, et al. Wnt signaling regulates Snai1 expression and cellular localization in the mouse intestinal epithelial stem cell niche. Stem Cells Dev. 2011;20(4):737–45.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Y, Tu L, Zhou X, et al. MicroRNA-22 regulates the proliferation, drug sensitivity and metastasis of human glioma cells by targeting SNAIL1. J Buon. 2020;25(1):491–6.

    Google Scholar 

  14. Luo WR, Chen XY, Li SY, et al. Neoplastic spindle cells in nasopharyngeal carcinoma show features of epithelial-mesenchymal transition. Histopathology. 2012;61(1):113–22.

    Article  PubMed  Google Scholar 

  15. de Morais EF, Morais HGF, de França GM, et al. SNAIL1 is involved in the control of the epithelial-mesenchymal transition in oral tongue squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol. 2023;135(4):530–8.

    Article  PubMed  Google Scholar 

  16. Kaufhold S, Bonavida B. Central role of Snail1 in the regulation of EMT and resistance in cancer: a target for therapeutic intervention. J Exp Clin Cancer Res. 2014;33(1):62.

    Article  PubMed Central  Google Scholar 

  17. Wang Y, Shi J, Chai K, et al. The role of Snail in EMT and tumorigenesis. Curr Cancer Drug Targets. 2013;13(9):963–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tanaka S, Kobayashi W, Haraguchi M, et al. Snail1 expression in human colon cancer DLD-1 cells confers invasive properties without N-cadherin expression. Biochem Biophys Rep. 2016;8:120–6.

    PubMed  PubMed Central  Google Scholar 

  19. Ni T, Li XY, Lu N, et al. Snail1-dependent p53 repression regulates expansion and activity of tumour-initiating cells in breast cancer. Nat Cell Biol. 2016;18(11):1221–32.

    Article  CAS  PubMed Central  Google Scholar 

  20. Freihen V, Rönsch K, Mastroianni J, et al. SNAIL1 employs β-Catenin-LEF1 complexes to control colorectal cancer cell invasion and proliferation. Int J Cancer. 2020;146(8):2229–42.

    Article  CAS  PubMed  Google Scholar 

  21. Kroepil F, Fluegen G, Totikov Z, et al. Down-regulation of CDH1 is associated with expression of SNAI1 in colorectal adenomas. PLoS ONE. 2012;7(9): e46665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kroepil F, Fluegen G, Vallböhmer D, et al. Snail1 expression in colorectal cancer and its correlation with clinical and pathological parameters. BMC Cancer. 2013;13:145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rashed HE, Hussein S, Mosaad H, et al. Prognostic significance of the genetic and the immunohistochemical expression of epithelial-mesenchymal-related markers in colon cancer. Cancer Biomark. 2017;20(1):107–22.

    Article  CAS  Google Scholar 

  24. Scheel C, Onder T, Karnoub A, et al. Adaptation versus selection: the origins of metastatic behavior. Cancer Res. 2007;67(24):11476–9.

    Article  CAS  PubMed  Google Scholar 

  25. Fang J, Ding Z. SNAI1 is a prognostic biomarker and correlated with immune infiltrates in gastrointestinal cancers. Aging. 2020;12(17):17167–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mohammadpour S, Esfahani AT, Karimpour R, et al. High expression of Snail1 is associated with EMAST and poor prognosis in CRC patients. Gastroenterol Hepatol Bed Bench. 2019;12(Suppl1):S30.

    PubMed  PubMed Central  Google Scholar 

  27. Man SM, Zhu Q, Zhu L, et al. Critical role for the DNA sensor AIM2 in stem cell proliferation and cancer. Cell. 2015;162(1):45–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Carver EA, Jiang R, Lan Y, et al. The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Mol Cell Biol. 2001;21(23):8184–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ananthakrishnan AN. Epidemiology and risk factors for IBD. Nat Rev Gastroenterol Hepatol. 2015;12(4):205–17.

    Article  PubMed  Google Scholar 

  30. Fumery M, Dulai PS, Gupta S, et al. Incidence, risk factors, and outcomes of colorectal cancer in patients with ulcerative colitis with low-grade dysplasia: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2017;15(5):665-74.e5.

    Article  PubMed  Google Scholar 

  31. Blanchaert C, Strubbe B, Peeters H. Fecal microbiota transplantation in ulcerative colitis. Acta Gastro-Enterol Belg. 2019;82(4):519–28.

    CAS  Google Scholar 

  32. Nanki K, Fujii M, Shimokawa M, et al. Somatic inflammatory gene mutations in human ulcerative colitis epithelium. Nature. 2020;577(7789):254–9.

    Article  CAS  Google Scholar 

  33. Wang Y, Wang P, Shao L. Correlation of ulcerative colitis and colorectal cancer: a systematic review and meta-analysis. J Gastrointest Oncol. 2021;12(6):2814–22.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pan M, Jiang C, Tse P, et al. TP53 gain-of-function and non-gain-of-function mutations are differentially associated with sidedness-dependent prognosis in metastatic colorectal cancer. J Clin Oncol. 2022;40(2):171–9.

    Article  CAS  PubMed  Google Scholar 

  35. Sanchez-Vega F, Mina M, Armenia J, et al. Oncogenic signaling pathways in the cancer genome atlas. Cell. 2018;173(2):321-37.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Drost J, van Jaarsveld RH, Ponsioen B, et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature. 2015;521(7550):43–7.

    Article  CAS  PubMed  Google Scholar 

  37. Cancer Genome Atlas Network CGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.

    Article  Google Scholar 

  38. Yaeger R, Chatila WK, Lipsyc MD, et al. Clinical sequencing defines the genomic landscape of metastatic colorectal cancer. Cancer Cell. 2018;33(1):125-36.e3.

    Article  CAS  PubMed Central  Google Scholar 

  39. Cheng X, Xu X, Chen D, et al. Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer. Biomed Pharmacother. 2019;110:473–81.

    Article  CAS  Google Scholar 

  40. Inukai T, Inoue A, Kurosawa H, et al. SLUG, a ces-1-related zinc finger transcription factor gene with antiapoptotic activity, is a downstream target of the E2A-HLF oncoprotein. Mol Cell. 1999;4(3):343–52.

    Article  CAS  PubMed  Google Scholar 

  41. Wong SHM, Fang CM, Chuah LH, et al. E-cadherin: its dysregulation in carcinogenesis and clinical implications. Crit Rev Oncol Hematol. 2018;121:11–22.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by National Natural Science Foundation of China (31960163), The Jinggang Scholar Program of Jiangxi Province (QD202205), The Research Team Project of Gannan Medical University (TD2021JC01) (To Zhiping Liu), The Project of Department of Education of Jiangxi Province (GJJ211539) (To Yayun Chen), and Doctor Startup Fund of The First Affiliated Hospital of Gannan Medical University and Jiangxi Education Department Fund (QD097, GJJ2201437) (To Qiuxiang Xiao).

Author information

Authors and Affiliations

Authors

Contributions

FQ, JX, and LS performed experiments, data analysis and interpretation, and drafted the manuscript; QX, TX, and YC performed part of experiments; ZL and JH designed the study and revised the manuscript.

Corresponding authors

Correspondence to Junyun Huang or Zhiping Liu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qing, F., Xue, J., Sui, L. et al. Intestinal epithelial SNAI1 promotes the occurrence of colorectal cancer by enhancing EMT and Wnt/β-catenin signaling. Med Oncol 41, 34 (2024). https://doi.org/10.1007/s12032-023-02253-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02253-w

Keywords

Navigation