Skip to main content
Log in

Ethacrynic acid and cinnamic acid combination exhibits selective anticancer effects on K562 chronic myeloid leukemia cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Despite the recent advances in chemotherapy, the outcomes and the success of these treatments still remain insufficient. Novel combination treatments and treatment strategies need to be developed in order to achieve more effective treatment. This study was designed to investigate the combined effect of ethacrynic acid and cinnamic acid on cancer cell lines.

Methods

The anti-proliferative effect of ethacrynic acid and cinnamic acid was investigated by MTT cell viability assay in three different cancer cell lines. Combination indexes were calculated using CompuSyn software. Apoptosis was assessed by flow cytometric Annexin V-FITC/PI double-staining. The effect of the inhibitors on cell cycle distribution was measured by propidium iodide staining.

Results

The combination treatment of ethacrynic acid and cinnamic acid decreased cell proliferation significantly, by 63%, 75% and 70% for K562, HepG2 and TFK-1 cells, respectively. A 5.5-fold increase in the apoptotic cell population was observed after combination treatment of K562 cells. The population of apoptotic cells increased by 9.3 and 0.4% in HepG2 and TFK-1 cells, respectively. Furthermore, cell cycle analysis shows significant cell cycle arrest in S and G2/M phase for K562 cells and non-significant accumulation in G0/G1 phase for TFK-1 and HepG2 cells.

Conclusions

Although there is a need for further investigation, our results suggest that the inhibitors used in this study cause a decrease in cellular proliferation, induce apoptosis and cause cell cycle arrest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

EA:

Ethacrynic acid.

CA:

Cinnamic acid.

FACS:

fluorescence-activated cell sorting.

EMT:

Epithelial mesenchymal transition.

CML:

Chronic myeloid leukemia.

CCA:

human cholangiocarcinoma.

HCC:

human hepatocellular carcinoma.

PBMC:

peripheral blood mononuclear.

References

  1. Alisky JM, Tuttle TF (2003) Ethacrynic acid can be effective for refractory congestive heart failure and ascites. South Med J 96:1148–1150. doi: https://doi.org/10.1097/01.SMJ.0000082004.40613.D7

    Article  PubMed  Google Scholar 

  2. Allocati N, Masulli M, Di Ilio C, Federici L (2018) Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis 7:8. doi: https://doi.org/10.1038/s41389-017-0025-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lu D, Liu JX, Endo T, Zhou H, Yao S, Willert K, Schmidt-Wolf IG, Kipps TJ, Carson DA (2009) Ethacrynic acid exhibits selective toxicity to chronic lymphocytic leukemia cells by inhibition of the Wnt/beta-catenin pathway. PLoS ONE 4:e8294. doi: https://doi.org/10.1371/journal.pone.0008294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Townsend DM, Tew KD (2003) The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 22:7369–7375. doi: https://doi.org/10.1038/sj.onc.1206940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang Q, Xiao H, Cai J, Xie Z, Wang Z, Jing X (2014) Nanoparticle mediated delivery of a GST inhibitor ethacrynic acid for sensitizing platinum based chemotherapy. RSC Adv 4:61124–61132. doi: https://doi.org/10.1039/C4RA12040J

    Article  CAS  Google Scholar 

  6. Wang R, Li C, Song D, Zhao G, Zhao L, Jing Y (2007) Ethacrynic acid butyl-ester induces apoptosis in leukemia cells through a hydrogen peroxide mediated pathway independent of glutathione S-transferase P1-1 inhibition. Cancer Res 67:7856–7864. doi: https://doi.org/10.1158/0008-5472.CAN-07-0151

    Article  CAS  PubMed  Google Scholar 

  7. Aizawa S, Ookawa K, Kudo T, Asano J, Hayakari M, Tsuchida S (2003) Characterization of cell death induced by ethacrynic acid in a human colon cancer cell line DLD-1 and suppression by N-acetyl-L-cysteine. Cancer Sci 94:886–893. doi: https://doi.org/10.1111/j.1349-7006.2003.tb01371.x

    Article  CAS  PubMed  Google Scholar 

  8. Yang X, Liu G, Li H, Zhang Y, Song D, Li C, Wang R, Liu B, Liang W, Jing Y, Zhao G (2010) Novel oxadiazole analogues derived from ethacrynic acid: design, synthesis, and structure-activity relationships in inhibiting the activity of glutathione S-transferase P1-1 and cancer cell proliferation. J Med Chem 53:1015–1022. doi: https://doi.org/10.1021/jm9011565

    Article  CAS  PubMed  Google Scholar 

  9. Cai R, Miao M, Yue T, Zhang Y, Cui L, Wang Z, Yuan Y (2019) Antibacterial activity and mechanism of cinnamic acid and chlorogenic acid against Alicyclobacillus acidoterrestris vegetative cells in apple juice. Int J Food Sci Technol 54:1697–1705. doi: https://doi.org/10.1111/ijfs.14051

    Article  CAS  Google Scholar 

  10. Guzman JD (2014) Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules 19:19292–19349. doi: https://doi.org/10.3390/molecules191219292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lima TC, Ferreira AR, Silva DF, Lima EO, de Sousa DP (2018) Antifungal activity of cinnamic acid and benzoic acid esters against Candida albicans strains. Nat Prod Res 32:572–575. doi: https://doi.org/10.1080/14786419.2017.1317776

    Article  CAS  PubMed  Google Scholar 

  12. De P, Baltas M, Bedos-Belval F (2011) Cinnamic acid derivatives as anticancer agents-a review. Curr Med Chem 18:1672–1703. doi: https://doi.org/10.2174/092986711795471347

    Article  CAS  PubMed  Google Scholar 

  13. Niero EL, Machado-Santelli GM (2013) Cinnamic acid induces apoptotic cell death and cytoskeleton disruption in human melanoma cells. J Exp Clin Cancer Res 32:31. doi: https://doi.org/10.1186/1756-9966-32-31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bayat Mokhtari R, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, Yeger H (2017) Combination therapy in combating cancer. Oncotarget 8:38022–38043. doi: https://doi.org/10.18632/oncotarget.16723

    Article  PubMed  Google Scholar 

  15. Gencer EB, Ural AU, Avcu F, Baran Y (2011) A novel mechanism of dasatinib-induced apoptosis in chronic myeloid leukemia; ceramide synthase and ceramide clearance genes. Ann Hematol 90:1265–1275. doi: https://doi.org/10.1007/s00277-011-1212-5

    Article  CAS  PubMed  Google Scholar 

  16. Chou T-C, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55. doi: https://doi.org/10.1016/0065-2571(84)90007-4

    Article  CAS  PubMed  Google Scholar 

  17. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 71:209–249. doi: https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  18. Lilenbaum RC, Herndon JE 2, List MA, Desch C, Watson DM, Miller AA, Graziano SL, Perry MC, Saville W, Chahinian P, Weeks JC, Holland JC, Green MR (2005) Single-agent versus combination chemotherapy in advanced non-small-cell lung cancer: the cancer and leukemia group B (study 9730). J Clin Oncol 23:190–196. doi: https://doi.org/10.1200/JCO.2005.07.172

  19. Falzone L, Salomone S, Libra M (2018) Evolution of Cancer Pharmacological Treatments at the Turn of the Third Millennium. Front Pharmacol 9:1300. doi: https://doi.org/10.3389/fphar.2018.01300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu L, Hudgins WR, Shack S, Yin MQ, Samid D (1995) Cinnamic acid: a natural product with potential use in cancer intervention. Int J Cancer 62:345–350. doi: https://doi.org/10.1002/ijc.2910620319

    Article  CAS  PubMed  Google Scholar 

  21. Hunke M, Martinez W, Kashyap A, Bokoskie T, Pattabiraman M, Chandra S (2018) Antineoplastic Actions of Cinnamic Acids and Their Dimers in Breast Cancer Cells: A Comparative Study. Anticancer Res 38:4469–4474. doi: https://doi.org/10.21873/anticanres.12749

    Article  CAS  PubMed  Google Scholar 

  22. Pal A, Tapadar P, Pal R (2021) Exploring the Molecular Mechanism of Cinnamic Acid-Mediated Cytotoxicity in Triple Negative MDA-MB-231 Breast Cancer Cells. Anticancer Agents Med Chem 21:1141–1150. doi: https://doi.org/10.2174/1871520620666200807222248

    Article  CAS  PubMed  Google Scholar 

  23. Zhu B, Shang B, Li Y, Zhen Y (2016) Inhibition of histone deacetylases by trans-cinnamic acid and its antitumor effect against colon cancer xenografts in athymic mice. Mol Med Rep 13:4159–4166. doi: https://doi.org/10.3892/mmr.2016.5041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Anantharaju PG, Reddy DB, Padukudru MA, Chitturi CMK, Vimalambike MG, Madhunapantula SV (2017) Induction of colon and cervical cancer cell death by cinnamic acid derivatives is mediated through the inhibition of Histone Deacetylases (HDAC). PLoS ONE 12:e0186208. doi: https://doi.org/10.1371/journal.pone.0186208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Koczurkiewicz-Adamczyk P, Piska K, Gunia-Krzyzak A, Bucki A, Jamrozik M, Lorenc E, Ryszawy D, Wojcik-Pszczola K, Michalik M, Marona H, Kolaczkowski M, Pekala E (2020) Cinnamic acid derivatives as chemosensitising agents against DOX-treated lung cancer cells - Involvement of carbonyl reductase 1. Eur J Pharm Sci 154:105511. doi: https://doi.org/10.1016/j.ejps.2020.105511

    Article  CAS  PubMed  Google Scholar 

  26. Lee YJ, Song H, Yoon YJ, Park SJ, Kim SY, Cho Han D, Kwon BM (2020) Ethacrynic acid inhibits STAT3 activity through the modulation of SHP2 and PTP1B tyrosine phosphatases in DU145 prostate carcinoma cells. Biochem Pharmacol 175:113920. doi: https://doi.org/10.1016/j.bcp.2020.113920

    Article  CAS  PubMed  Google Scholar 

  27. Ploemen JH, van Ommen B, Bogaards JJ, van Bladeren PJ (1993) Ethacrynic acid and its glutathione conjugate as inhibitors of glutathione S-transferases. Xenobiotica 23:913–923. doi: https://doi.org/10.3109/00498259309059418

    Article  CAS  PubMed  Google Scholar 

  28. Schmidt M, Sievers E, Endo T, Lu D, Carson D, Schmidt-Wolf IGH (2009) Targeting Wnt pathway in lymphoma and myeloma cells. Br J Haematol 144:796–798. doi:https://doi.org/10.1111/j.1365-2141.2008.07503.x

    Article  PubMed  Google Scholar 

  29. Yu L, Kim HJ, Park MK, Byun HJ, Kim EJ, Kim B, Nguyen MT, Kim JH, Kang GJ, Lee H, Kim SY, Rho SB, Lee CH (2021) Ethacrynic acid, a loop diuretic, suppresses epithelial-mesenchymal transition of A549 lung cancer cells via blocking of NDP-induced WNT signaling. Biochem Pharmacol 183:114339. doi: https://doi.org/10.1016/j.bcp.2020.114339

    Article  CAS  PubMed  Google Scholar 

  30. Liu B, Huang X, Hu Y, Chen T, Peng B, Gao N, Jin Z, Jia T, Zhang N, Wang Z, Jin G (2016) Ethacrynic acid improves the antitumor effects of irreversible epidermal growth factor receptor tyrosine kinase inhibitors in breast cancer. Oncotarget 7:58038–58050. doi: https://doi.org/10.18632/oncotarget.10846

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang X, Huang C, Cui B, Pang Y, Liang R, Luo X (2021) Ethacrynic Acid Enhances the Antitumor Effects of Afatinib in EGFR/T790M-Mutated NSCLC by Inhibiting WNT/Beta-Catenin Pathway Activation. Dis Markers 2021:5530673. doi: https://doi.org/10.1155/2021/5530673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang R, Liu C, Xia L, Zhao G, Gabrilove J, Waxman S, Jing Y (2012) Ethacrynic acid and a derivative enhance apoptosis in arsenic trioxide-treated myeloid leukemia and lymphoma cells: the role of glutathione S-transferase p1-1. Clin Cancer Res 18:6690–6701. doi: https://doi.org/10.1158/1078-0432.CCR-12-0770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Joshi H, Marulkar K, Gota V, Ramaa CS (2017) Hydroxy Cinnamic Acid Derivatives as Partial PPARgamma Agonists: In silico Studies, Synthesis and Biological Characterization Against Chronic Myeloid Leukemia Cell Line (K562). Anticancer Agents Med Chem 17:524–541. doi: https://doi.org/10.2174/1871520616666160607010156

    Article  CAS  PubMed  Google Scholar 

  34. Gajate C, Barasoain I, Andreu JM, Mollinedo F (2000) Induction of apoptosis in leukemic cells by the reversible microtubule-disrupting agent 2-methoxy-5-(2’,3’,4’-trimethoxyphenyl)-2,4,6-cycloheptatrien-1 -one: protection by Bcl-2 and Bcl-X(L) and cell cycle arrest. Cancer Res 60:2651–2659

    CAS  PubMed  Google Scholar 

  35. Sova M, Zizak Z, Stankovic JA, Prijatelj M, Turk S, Juranic ZD, Mlinaric-Rascan I, Gobec S (2013) Cinnamic acid derivatives induce cell cycle arrest in carcinoma cell lines. Med Chem 9:633–641. doi: https://doi.org/10.2174/1573406411309050002

    Article  CAS  PubMed  Google Scholar 

  36. Somberg JC, Molnar J (2009) The pleiotropic effects of ethacrynic acid. Am J Ther 16:102–104. doi: https://doi.org/10.1097/MJT.0b013e3181961264

    Article  PubMed  Google Scholar 

  37. Punganuru SR, Mostofa AGM, Madala HR, Basak D, Srivenugopal KS (2016) Potent anti-proliferative actions of a non-diuretic glucosamine derivative of ethacrynic acid. Bioorg Med Chem Lett 26:2829–2833. doi: https://doi.org/10.1016/j.bmcl.2016.04.062

    Article  CAS  PubMed  Google Scholar 

  38. Mignani S, El Brahmi N, El Kazzouli S, Eloy L, Courilleau D, Caron J, Bousmina MM, Caminade AM, Cresteil T, Majoral JP (2016) A novel class of ethacrynic acid derivatives as promising drug-like potent generation of anticancer agents with established mechanism of action. Eur J Med Chem 122:656–673. doi: https://doi.org/10.1016/j.ejmech.2016.05.063

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the flow cytometry facility in the Genome and Stem Cell Center of Erciyes University. We thank Esma Saraymen, the flow cytometry specialist, for her technical assistance during flow cytometry experiments. We would like to thank Benjamin Wheeler for proofreading the manuscript.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Emel Başak Gencer Akçok and İsmail Akçok contributed to the study of conception and design. Material preparation, data collection were performed by Münevver Yenigül. Analysis and interpretation were performed by Münevver Yenigül, Emel Başak Gencer Akçok and İsmail Akçok. The first draft of the manuscript was written by Emel Başak Gencer Akçok and İsmail Akçok. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Emel Başak Gencer Akçok.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yenigül, M., Akçok, İ. & Gencer Akçok, E. Ethacrynic acid and cinnamic acid combination exhibits selective anticancer effects on K562 chronic myeloid leukemia cells. Mol Biol Rep 49, 7521–7530 (2022). https://doi.org/10.1007/s11033-022-07560-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07560-5

Keywords

Navigation