Skip to main content

Advertisement

Log in

Therapeutic cell-based vaccines for glioblastoma multiforme

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Glioblastoma multiforme (GBM), a highly aggressive tumor, poses significant challenges in achieving successful treatment outcomes. Conventional therapeutic modalities including surgery, radiation, and chemotherapy have demonstrated limited efficacy, primarily attributed to the complexities associated with drug delivery to the tumor site and tumor heterogeneity. To address this critical need for innovative therapies, the potential of cancer vaccines utilizing tumor cells and dendritic cells has been explored for GBM treatment. This article provides a comprehensive review of therapeutic vaccinations employing cell-based vaccine strategies for the management of GBM. A meticulous evaluation of 45 clinical trials involving more than 1500 participants revealed that cell-based vaccinations have exhibited favorable safety profiles with minimal toxicity. Moreover, these vaccines have demonstrated modest improvements in overall survival and progression-free survival among patients. However, certain limitations still persist. Notably, there is a need for advancements in the development of potent antigens to evoke immune responses, as well as the optimization of dosage regimens. Consequently, while cell-based vaccinations show promise as a potential therapeutic approach for GBM, further research is imperative to overcome the current limitations. The ultimate objective is to surmount these obstacles and establish cell-based vaccinations as a standard therapeutic modality for GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Cunha M, Maldaun MVC. Metastasis from glioblastoma multiforme: a meta-analysis. Rev Assoc Med Bras. 2019;65(3):424–33.

    PubMed  Google Scholar 

  2. Stupp R, Taillibert S, Kanner AA, Kesari S, Steinberg DM, Toms SA, et al. Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial. JAMA. 2015;314(23):2535–43.

    PubMed  CAS  Google Scholar 

  3. Shireman JM, Gonugunta N, Zhao L, Pattnaik A, Distler E, Her S, et al. GM-CSF and IL-7 fusion cytokine engineered tumor vaccine generates long-term Th-17 memory cells and increases overall survival in aged syngeneic mouse models of glioblastoma. Aging Cell. 2023. https://doi.org/10.1111/acel.13864.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ganipineni LP, Danhier F, Préat V. Drug delivery challenges and future of chemotherapeutic nanomedicine for glioblastoma treatment. J Control Release. 2018;281:42–57.

    PubMed  CAS  Google Scholar 

  5. Khatami SH, Karami N, Taheri-Anganeh M, Taghvimi S, Tondro G, Khorsand M, et al. Exosomes: promising delivery tools for overcoming blood-brain barrier and glioblastoma therapy. Mol Neurobiol. 2023;60(8):4659–78.

    PubMed  CAS  Google Scholar 

  6. Zhan C, Lu W. The blood-brain/tumor barriers: challenges and chances for malignant gliomas targeted drug delivery. Curr Pharm Biotechnol. 2012;13(12):2380–7.

    PubMed  CAS  Google Scholar 

  7. Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat Rev Cancer. 2020;20(1):26–41.

    PubMed  CAS  Google Scholar 

  8. Mo F, Pellerino A, Soffietti R, Rudà R. Blood-brain barrier in brain tumors: biology and clinical relevance. Int J Mol Sci. 2021;22(23):12654.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Dymova MA, Kuligina EV, Richter VA. Molecular mechanisms of drug resistance in glioblastoma. Int J Mol Sci. 2021;22(12):6385.

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Fisher R, Pusztai L, Swanton C. Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer. 2013;108(3):479–85.

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Arrieta VA, Dmello C, McGrail DJ, Brat DJ, Lee-Chang C, Heimberger AB, et al. Immune checkpoint blockade in glioblastoma: from tumor heterogeneity to personalized treatment. J Clin Invest. 2023. https://doi.org/10.1172/JCI163447.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee ShU. Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev. 2017;18(1):3–9.

    PubMed  PubMed Central  Google Scholar 

  13. Janjua TI, Rewatkar P, Ahmed-Cox A, Saeed I, Mansfeld FM, Kulshreshtha R, et al. Frontiers in the treatment of glioblastoma: past, present and emerging. Adv Drug Deliv Rev. 2021;171:108–38.

    PubMed  CAS  Google Scholar 

  14. Aly A, Singh P, Korytowsky B, Ling Y-L, Kale HP, Dastani HB, et al. Survival, costs, and health care resource use by line of therapy in US Medicare patients with newly diagnosed glioblastoma: a retrospective observational study. Neuro-Oncol Pract. 2019;7(2):164–75.

    Google Scholar 

  15. Weller M, van den Bent M, Preusser M, Le Rhun E, Tonn JC, Minniti G, et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol. 2021;18(3):170–86.

    PubMed  Google Scholar 

  16. Wick W, Osswald M, Wick A, Winkler F. Treatment of glioblastoma in adults. Ther Adv Neurol Disord. 2018;11:1756286418790452.

    PubMed  PubMed Central  Google Scholar 

  17. Franceschi E, Minichillo S, Brandes AA. Pharmacotherapy of glioblastoma: established treatments and emerging concepts. CNS Drugs. 2017;31(8):675–84.

    PubMed  CAS  Google Scholar 

  18. Oh HC, Shim JK, Park J, Lee JH, Choi RJ, Kim NH, et al. Combined effects of niclosamide and temozolomide against human glioblastoma tumorspheres. J Cancer Res Clin Oncol. 2020;146(11):2817–28.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Arora A, Somasundaram K. Glioblastoma vs temozolomide: can the red queen race be won? Cancer Biol Ther. 2019;20(8):1083–90.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Sevastre AS, Costachi A, Tataranu LG, Brandusa C, Artene SA, Stovicek O, et al. Glioblastoma pharmacotherapy: a multifaceted perspective of conventional and emerging treatments (Review). Exp Ther Med. 2021;22(6):1408.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Xiao ZZ, Wang ZF, Lan T, Huang WH, Zhao YH, Ma C, et al. Carmustine as a supplementary therapeutic option for glioblastoma: a systematic review and meta-analysis. Front Neurol. 2020;11:1036.

    PubMed  PubMed Central  Google Scholar 

  22. Barrascout E, Lamuraglia M. Glioblastoma and bevacizumab in elderly patients: monocentric study. J Oncol Pharm Pract. 2021;27(4):842–6.

    PubMed  CAS  Google Scholar 

  23. Narita Y. Bevacizumab for glioblastoma. Ther Clin Risk Manag. 2015;11:1759–65.

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Rominiyi O, Vanderlinden A, Clenton SJ, Bridgewater C, Al-Tamimi Y, Collis SJ. Tumour treating fields therapy for glioblastoma: current advances and future directions. Br J Cancer. 2021;124(4):697–709.

    PubMed  Google Scholar 

  25. Bernard-Arnoux F, Lamure M, Ducray F, Aulagner G, Honnorat J, Armoiry X. The cost-effectiveness of tumor-treating fields therapy in patients with newly diagnosed glioblastoma. Neuro Oncol. 2016;18(8):1129–36.

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Zhao T, Li C, Ge H, Lin Y, Kang D. Glioblastoma vaccine tumor therapy research progress. Chin Neurosurg J. 2022;8(1):2.

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Zhao M, van Straten D, Broekman MLD, Préat V, Schiffelers RM. Nanocarrier-based drug combination therapy for glioblastoma. Theranostics. 2020;10(3):1355–72.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Bruinsmann FA, Richter Vaz G, Soares Alves ADC, Aguirre T, Raffin Pohlmann A, Stanisçuaski Guterres S, et al. Nasal drug delivery of anticancer drugs for the treatment of glioblastoma: preclinical and clinical trials. Molecules. 2019;24(23):4312.

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Yang Q, Zhou Y, Chen J, Huang N, Wang Z, Cheng Y. Gene therapy for drug-resistant glioblastoma via lipid-polymer hybrid nanoparticles combined with focused ultrasound. Int J Nanomed. 2021;16:185–99.

    Google Scholar 

  30. Stephens AJ, Burgess-Brown NA, Jiang S. Beyond just peptide antigens: the complex world of peptide-based cancer vaccines. Front Immunol. 2021;12:696791.

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Da Ros M, De Gregorio V, Iorio AL, Giunti L, Guidi M, de Martino M, et al. Glioblastoma chemoresistance: the double play by microenvironment and blood-brain barrier. Int J Mol Sci. 2018;19(10):2879.

    PubMed  PubMed Central  Google Scholar 

  32. Kong Z, Wang Y, Ma W. Vaccination in the immunotherapy of glioblastoma. Hum Vaccine Immunother. 2018;14(2):255–68.

    Google Scholar 

  33. Kanaly CW, Ding D, Heimberger AB, Sampson JH. Clinical applications of a peptide-based vaccine for glioblastoma. Neurosurg Clin N Am. 2010;21(1):95–109.

    PubMed  PubMed Central  Google Scholar 

  34. Frederico SC, Hancock JC, Brettschneider EES, Ratnam NM, Gilbert MR, Terabe M. Making a cold tumor hot: the role of vaccines in the treatment of glioblastoma. Front Oncol. 2021;11:672508.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Balan S, Saxena M, Bhardwaj N. Dendritic cell subsets and locations. Int Rev Cell Mol Biol. 2019;348:1–68.

    PubMed  CAS  Google Scholar 

  36. Munson PV, Butterfield LH, Adamik J. Chapter 7 - Novel dendritic cell vaccine strategies. In: Buonaguro L, Van Der Burg S, editors. Cancer vaccines as immunotherapy of cancer. Cambridge: Academic Press; 2022. p. 109–35.

    Google Scholar 

  37. Reardon D, Mitchell D. The development of dendritic cell vaccine-based immunotherapies for glioblastoma. Sem Immunopathol. 2017;39:225–239.

    CAS  Google Scholar 

  38. Cintolo JA, Datta J, Mathew SJ, Czerniecki BJ. Dendritic cell-based vaccines: barriers and opportunities. Future Oncol. 2012;8(10):1273–99.

    PubMed  CAS  Google Scholar 

  39. Boudousquié C, Boand V, Lingre E, Dutoit L, Balint K, Danilo M, et al. Development and optimization of a GMP-compliant manufacturing process for a personalized tumor lysate dendritic cell vaccine. Vaccines (Basel). 2020. https://doi.org/10.3390/vaccines8010025.

    Article  PubMed  Google Scholar 

  40. Strome SE, Voss S, Wilcox R, Wakefield TL, Tamada K, Flies D, et al. Strategies for antigen loading of dendritic cells to enhance the antitumor immune response. Cancer Res. 2002;62(6):1884–9.

    PubMed  CAS  Google Scholar 

  41. Chiang CL, Kandalaft LE, Tanyi J, Hagemann AR, Motz GT, Svoronos N, et al. A dendritic cell vaccine pulsed with autologous hypochlorous acid-oxidized ovarian cancer lysate primes effective broad antitumor immunity: from bench to bedside. Clin Cancer Res. 2013;19(17):4801–15.

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Chiang CL, Maier DA, Kandalaft LE, Brennan AL, Lanitis E, Ye Q, et al. Optimizing parameters for clinical-scale production of high IL-12 secreting dendritic cells pulsed with oxidized whole tumor cell lysate. J Transl Med. 2011;9:198.

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Tanyi JL, Bobisse S, Ophir E, Tuyaerts S, Roberti A, Genolet R, et al. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci Transl Med. 2018. https://doi.org/10.1126/scitranslmed.aao5931.

    Article  PubMed  Google Scholar 

  44. Chiang CL, Ledermann JA, Rad AN, Katz DR, Chain BM. Hypochlorous acid enhances immunogenicity and uptake of allogeneic ovarian tumor cells by dendritic cells to cross-prime tumor-specific T cells. Cancer Immunol Immunother. 2006;55(11):1384–95.

    PubMed  Google Scholar 

  45. Minasian LM, O’Mara A, Mitchell SA. Clinician and patient reporting of symptomatic adverse events in cancer clinical trials: using CTCAE and PRO-CTCAE(®) to provide two distinct and complementary perspectives. Patient Relat Outcome Meas. 2022;13:249–58.

    PubMed  PubMed Central  Google Scholar 

  46. Sloan AE, Dansey R, Zamorano L, Barger G, Hamm C, Diaz F, et al. Adoptive immunotherapy in patients with recurrent malignant glioma: preliminary results of using autologous whole-tumor vaccine plus granulocyte-macrophage colony-stimulating factor and adoptive transfer of anti-CD3-activated lymphocytes. Neurosurg Focus. 2000;9(6): e9.

    PubMed  CAS  Google Scholar 

  47. Plautz GE, Barnett GH, Miller DW, Cohen BH, Prayson RA, Krauss JC, et al. Systemic T cell adoptive immunotherapy of malignant gliomas. J Neurosurg. 1998;89(1):42–51.

    PubMed  CAS  Google Scholar 

  48. Liau LM, Prins RM, Kiertscher SM, Odesa SK, Kremen TJ, Giovannone AJ, et al. Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res. 2005;11(15):5515–25.

    PubMed  CAS  Google Scholar 

  49. Vik-Mo EO, Nyakas M, Mikkelsen BV, Moe MC, Due-Tønnesen P, Suso EM, et al. Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunol Immunother. 2013;62(9):1499–509.

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Liau LM, Ashkan K, Brem S, Campian JL, Trusheim JE, Iwamoto FM, et al. Association of autologous tumor lysate-loaded dendritic cell vaccination with extension of survival among patients with newly diagnosed and recurrent glioblastoma: a phase 3 prospective externally controlled cohort trial. JAMA Oncol. 2023;9(1):112–21.

    PubMed  Google Scholar 

  51. Chang CN, Huang YC, Yang DM, Kikuta K, Wei KJ, Kubota T, et al. A phase I/II clinical trial investigating the adverse and therapeutic effects of a postoperative autologous dendritic cell tumor vaccine in patients with malignant glioma. J Clin Neurosci. 2011;18(8):1048–54.

    PubMed  CAS  Google Scholar 

  52. Wen PY, Reardon DA, Armstrong TS, Phuphanich S, Aiken RD, Landolfi JC, et al. A randomized double-blind placebo-controlled phase II trial of dendritic cell vaccine ICT-107 in newly diagnosed patients with glioblastoma. Clin Cancer Res. 2019;25(19):5799–807.

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Hu JL, Omofoye OA, Rudnick JD, Kim S, Tighiouart M, Phuphanich S, et al. A phase I study of autologous dendritic cell vaccine pulsed with allogeneic stem-like cell line lysate in patients with newly diagnosed or recurrent glioblastoma. Clin Cancer Res. 2022;28(4):689–96.

    PubMed  CAS  Google Scholar 

  54. Lv L, Huang J, Xi H, Zhou X. Efficacy and safety of dendritic cell vaccines for patients with glioblastoma: a meta-analysis of randomized controlled trials. Int Immunopharmacol. 2020;83: 106336.

    PubMed  CAS  Google Scholar 

  55. Neth BJ, Webb MJ, Parney IF, Sener UT. The current status, challenges, and future potential of therapeutic vaccination in glioblastoma. Pharmaceutics. 2023;15(4):1134.

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Thomas AA, Fisher JL, Ernstoff MS, Fadul CE. Vaccine-based immunotherapy for glioblastoma. CNS Oncol. 2013;2(4):331–49.

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Sayegh ET, Oh T, Fakurnejad S, Bloch O, Parsa AT. Vaccine therapies for patients with glioblastoma. J Neurooncol. 2014;119(3):531–46.

    PubMed  CAS  Google Scholar 

  58. Jackson C, Ruzevick J, Brem H, Lim M. Vaccine strategies for glioblastoma: progress and future directions. Immunotherapy. 2013;5(2):155–67.

    PubMed  CAS  Google Scholar 

Download references

Funding

This research did not receive any funding.

Author information

Authors and Affiliations

Authors

Contributions

MEP collected data and wrote the main manuscript text. MEP and SGM prepared figures and tables. All authors reviewed the manuscript.

Corresponding author

Correspondence to Fatemeh Mosaffa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pour, M.E., Moghadam, S.G., Shirkhani, P. et al. Therapeutic cell-based vaccines for glioblastoma multiforme. Med Oncol 40, 354 (2023). https://doi.org/10.1007/s12032-023-02220-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02220-5

Keywords

Navigation