Skip to main content

Advertisement

Log in

Upregulation of FAM50A promotes cancer development

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

FAM50A encodes a nuclear protein involved in mRNA processing; however, its role in cancer development remains unclear. Herein, we conducted an integrative pan-cancer analysis using The Cancer Genome Atlas, Genotype-Tissue Expression, and the Clinical Proteomic Tumor Analysis Consortium databases. Based on the gene expression data from TCGA and GTEx databases, we compared FAM50A mRNA levels in 33 types of human cancer tissues to those in corresponding normal tissues and found that FAM50A mRNA level was upregulated in 20 of the 33 types of common cancer tissues. Then, we compared the DNA methylation status of the FAM50A promoter in tumor tissues to that in corresponding normal tissues. FAM50A upregulation was accompanied by promoter hypomethylation in 8 of the 20 types of tumor tissues, suggesting that promoter hypomethylation contributes to the upregulation of FAM50A in these cancer tissues. Elevated FAM50A expression in 10 types of cancer tissues was associated with poor prognosis in patients with cancer. FAM50A expression was positively correlated with CD4+ T-lymphocyte and dendritic cell infiltration in cancer tissues but was negatively correlated with CD8+ T-cell infiltration in cancer tissues. FAM50A knockdown caused DNA damage, induced interferon beta and interleukin-6 expression, and repressed the proliferation, invasion, and migration of cancer cells. Our findings indicate that FAM50A might be useful in cancer detection, reveal insights into its role in cancer development, and may contribute to the development of cancer diagnostics and treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

GTEx:

Genotype-tissue expression database

TIMER:

Tumor immune estimation resource

GEPIA2:

Gene expression profiling interactive analysis 2

UALCAN:

University of Alabama at Birmingham Cancer Data Analysis Portal

TILs:

Tumor-infiltrating lymphocytes

TISIDB:

Tumor–immune system interactions database

KEGG:

Kyoto Encyclopedia of Genes and Genomes

GO:

Gene Ontology

BLCA:

Bladder urothelial carcinoma

BRCA:

Breast invasive carcinoma

CHOL:

Cholangiocarcinoma

COAD:

Colon adenocarcinoma

ESCA:

Esophageal carcinoma

HNSC:

Head and neck squamous cell carcinoma

KICH:

Kidney chromophobe

KIRC:

Kidney renal clear cell carcinoma

KIRP:

Kidney renal papillary cell carcinoma

LIHC:

Liver hepatocellular carcinoma

LUAD:

Lung adenocarcinoma

LUSC:

Lung squamous cell carcinoma

PRAD:

Prostate adenocarcinoma

READ:

Rectum adenocarcinoma

STAD:

Stomach adenocarcinoma

THCA:

Thyroid carcinoma

UCEC:

Uterine corpus endometrial carcinoma

DLBC:

Lymphoid neoplasm diffuse large B-cell lymphoma

PAAD:

Pancreatic adenocarcinoma

THYM:

Thymoma

CPTAC:

Clinical proteomic oncology analysis

OV:

Ovarian cancer

LUNG:

Lung cancer

GBM:

Glioblastoma multiforme

TGCT:

Testicular cancer

KIPAN:

Pan-kidney cohort

GBMLGG:

Lower grade glioma and glioma

COADREAD:

Colon adenocarcinoma

MSI:

Microsatellite instability

UCS:

Uterine carcinosarcoma

SKCM:

Skin cutaneous melanoma

UVM:

Uveal melanoma

WT:

Wilms tumor

DFS:

Disease-free survival

DSS:

Disease-specific survival

PFS:

Progression-free survival

LGG:

Brain lower grade glioma

SARC:

Sarcoma

RT-PCR:

Real-time polymerase chain reaction

HCC:

Hepatocellular carcinoma

siRNA:

Small interfering RNA

References

  1. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12(1):31–46.

    Article  CAS  PubMed  Google Scholar 

  2. Sung H, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  3. Jeggo PA, Pearl LH, Carr AM. DNA repair, genome stability and cancer: a historical perspective. Nat Rev Cancer. 2016;16(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  4. Chatterjee A, Rodger EJ, Eccles MR. Epigenetic drivers of tumourigenesis and cancer metastasis. Semin Cancer Biol. 2018;51:149–59.

    Article  CAS  PubMed  Google Scholar 

  5. Ma X, et al. Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature. 2018;555(7696):371–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kandoth C, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502(7471):333–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lawrence MS, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505(7484):495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Toyoda A, et al. Isolation and analysis of a novel gene, HXC-26, adjacent to the rab GDP dissociation inhibitor gene located at human chromosome Xq28 region. DNA Res. 1996;3(5):337–40.

    Article  CAS  PubMed  Google Scholar 

  9. Haghshenas S, et al. Detection of a DNA methylation signature for the intellectual developmental disorder, X-linked, syndromic, armfield type. Int J Mol Sci. 2021;22(3):1111. https://doi.org/10.3390/ijms22031111.

  10. Mazzarella R, et al. Differential expression of XAP5, a candidate disease gene. Genomics. 1997;45(1):216–9.

    Article  CAS  PubMed  Google Scholar 

  11. Kim Y, et al. The Fam50a positively regulates ameloblast differentiation via interacting with Runx2. J Cell Physiol. 2018;233(2):1512–22.

    Article  CAS  PubMed  Google Scholar 

  12. Lee YR, et al. Mutations in FAM50A suggest that Armfield XLID syndrome is a spliceosomopathy. Nat Commun. 2020;11(1):3698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thompson NA, et al. Combinatorial CRISPR screen identifies fitness effects of gene paralogues. Nat Commun. 2021;12(1):1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Amin NA, et al. A quantitative analysis of subclonal and clonal gene mutations before and after therapy in chronic lymphocytic leukemia. Clin Cancer Res. 2016;22(17):4525–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xie X, et al. Proto-oncogene FAM50A can regulate the immune microenvironment and development of hepatocellular carcinoma in vitro and in vivo. Int J Mol Sci. 2023;24(4):3217. https://doi.org/10.3390/ijms24043217.

  16. Tang KF, et al. Decreased Dicer expression elicits DNA damage and up-regulation of MICA and MICB. J Cell Biol. 2008;182(2):233–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li T, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 2017;77(21):e108–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tang Z, et al. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47(W1):W556–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chandrashekar DS, et al. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia. 2022;25:18–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shen W, et al. Sangerbox: a comprehensive, interaction-friendly clinical bioinformatics analysis platform. iMeta. 2022;1:e36.

  21. Ru B, et al. TISIDB: an integrated repository portal for tumor-immune system interactions. Bioinformatics. 2019;35(20):4200–2.

    Article  CAS  PubMed  Google Scholar 

  22. Ku JL, Jeon YK, Park JG. Methylation-specific PCR. Methods Mol Biol. 2011;791:23–32.

    Article  CAS  PubMed  Google Scholar 

  23. Bagci O, Kurtgoz S. Amplification of cellular oncogenes in solid tumors. N Am J Med Sci. 2015;7(8):341–6.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang Y, et al. Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts. J Hematol Oncol. 2022;15(1):111.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Thorsson V, et al. The immune landscape of cancer. Immunity. 2018;48(4):812–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Armfield K, et al. X-linked mental retardation syndrome with short stature, small hands and feet, seizures, cleft palate, and glaucoma is linked to Xq28. Am J Med Genet. 1999;85(3):236–42.

    Article  CAS  PubMed  Google Scholar 

  27. Kwon SM, et al. Global spliceosome activity regulates entry into cellular senescence. FASEB J. 2021;35(1): e21204.

    Article  CAS  PubMed  Google Scholar 

  28. Kumar D, et al. Degradation of splicing factor SRSF3 contributes to progressive liver disease. J Clin Invest. 2019;129(10):4477–91.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chan YA, Hieter P, Stirling PC. Mechanisms of genome instability induced by RNA-processing defects. Trends Genet. 2014;30(6):245–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stratigi K, Chatzidoukaki O, Garinis GA. DNA damage-induced inflammation and nuclear architecture. Mech Ageing Dev. 2017;165(Pt A):17–26.

    Article  CAS  PubMed  Google Scholar 

  31. Pilger D, Seymour LW, Jackson SP. Interfaces between cellular responses to DNA damage and cancer immunotherapy. Genes Dev. 2021;35(9–10):602–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hopfner KP, Hornung V. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat Rev Mol Cell Biol. 2020;21(9):501–21.

    Article  CAS  PubMed  Google Scholar 

  33. Kostianets O, et al. Immunohistochemical analysis of medullary breast carcinoma autoantigens in different histological types of breast carcinomas. Diagn Pathol. 2012;7:161.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kaaij LJ, et al. Enhancers reside in a unique epigenetic environment during early zebrafish development. Genome Biol. 2016;17(1):146.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bunch BL, et al. Systemic and intravesical adoptive cell therapy of tumor-reactive T cells can decrease bladder tumor growth in vivo. J Immunother Cancer. 2020;8(2):e001673. https://doi.org/10.1136/jitc-2020-001673.

  36. Hall M, et al. Expansion of tumor-infiltrating lymphocytes (TIL) from human pancreatic tumors. J Immunother Cancer. 2016;4:61.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Laidlaw BJ, Craft JE, Kaech SM. The multifaceted role of CD4(+) T cells in CD8(+) T cell memory. Nat Rev Immunol. 2016;16(2):102–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Baharom F, et al. Systemic vaccination induces CD8(+) T cells and remodels the tumor microenvironment. Cell. 2022;185(23):4317–32.

    Article  CAS  PubMed  Google Scholar 

  39. Farhood B, Najafi M, Mortezaee K. CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: a review. J Cell Physiol. 2019;234(6):8509–21.

    Article  CAS  PubMed  Google Scholar 

  40. Fearon ER, et al. Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell. 1990;60(3):397–403.

    Article  CAS  PubMed  Google Scholar 

  41. Borst J, et al. CD4(+) T cell help in cancer immunology and immunotherapy. Nat Rev Immunol. 2018;18(10):635–47.

    Article  CAS  PubMed  Google Scholar 

  42. Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther. 2021;6(1):254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature. 2012;481(7381):287–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to all of those with whom we have had the pleasure to work during this and other related projects.

Funding

This work was supported by the National Natural Science Foundation of China (Grant Numbers 81972648, 82172915, and 81773011) and the Chongqing Medical University Program for Youth Innovation in Future Medicine (Grant Number W0084).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. MZH, ZZD, HYJ, AQZ, HL, MMS, and JNL performed the experiments and analyzed the data. The first draft of the manuscript was written by MZH. KF Tang reviewed the manuscript. SJZ and KJW supervised the study. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Shu-Juan Zhu or Ke-Jian Wang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or nonfinancial interests to disclose.

Ethical approval

The Ethics Committee of ChongQing Medical University has confirmed that no ethical approval is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 613 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, MZ., Dai, ZZ., Ji, HY. et al. Upregulation of FAM50A promotes cancer development. Med Oncol 40, 217 (2023). https://doi.org/10.1007/s12032-023-02072-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02072-z

Keywords

Navigation