Skip to main content

Advertisement

Log in

Chemotherapy: how to reduce its adverse effects while maintaining the potency?

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Chemotherapy is one of the widely used anticancer treatments that involves the use of powerful cytotoxic drugs to stop tumor growth by targeting rapidly dividing cells through various mechanisms, which will be elucidated in this review. Introduced during the early twentieth century, chemotherapy has since lengthened the longevity of innumerable cancer patients. However, the increase in lifespan is at the expense of quality of life as patients are at risk of developing short-term and long-term side effects following chemotherapy, such as alopecia (hair loss), chemotherapy-induced peripheral neuropathy, chemotherapy-induced nausea and vomiting, cardiotoxicity, diarrhea, infertility, and chemo brain. Currently, a number of these chemotherapy-induced adverse effects are managed through supportive care and approved treatments, while the rest of the side effects are unavoidable. Hence, chemotherapeutic drugs associated with inevitable side effects are only administered when their therapeutic role outweighs their chemotoxicity, thus severely limiting the potency of chemotherapy in treating malignancy. Therein, the potential approaches to alleviating side effects of chemotherapy ranging from pharmaceutical drugs to alternative therapies will be discussed in this review in hopes of increasing the tolerance and effectiveness of future chemotherapeutic treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. DeVita VT Jr, Chu E. A history of cancer chemotherapy. Cancer Res. 2008;68:8643–86.

    Article  CAS  PubMed  Google Scholar 

  2. Seufferlein T, Porzner M, Heinemann V, Tannapfel A, Stuschke M, Uhl W. Ductal pancreatic adenocarcinoma. Dtsch Arztebl Int. 2014;111:396–402.

    PubMed  PubMed Central  Google Scholar 

  3. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, Jemal A, Kramer JL, Siegel RL. Cancer treatment and survivorship statistics. CA Cancer J Clin. 2019;69:363–85.

    Article  PubMed  Google Scholar 

  4. Aisner J. Overview of the changing paradigm in cancer treatment: oral chemotherapy. Am J Health Syst Pharm. 2007;64:S4-7.

    Article  CAS  PubMed  Google Scholar 

  5. Krumbhaar EB, Krumbhaar HD. The blood and bone marrow in yellow cross gas (mustard gas) poisoning: changes produced in the bone marrow of fatal cases. J Med Res. 1919;40(497–508):3.

    Google Scholar 

  6. Goodman LS, Wintrobe MM, et al. Nitrogen mustard therapy; use of methyl-bis (beta-chloroethyl) amine hydrochloride and tris (beta-chloroethyl) amine hydrochloride for Hodgkin’s disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. J Am Med Assoc. 1946;132:126–32.

    Article  CAS  PubMed  Google Scholar 

  7. Christakis P. The birth of chemotherapy at Yale. Bicentennial lecture series: surgery grand round. Yale J Biol Med. 2011;84:169–72.

    PubMed  PubMed Central  Google Scholar 

  8. Farber S, Diamond LK. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N Engl J Med. 1948;238:787–93.

    Article  CAS  PubMed  Google Scholar 

  9. Schmidt ME, Scherer S, Wiskemann J, Steindorf K. Return to work after breast cancer: the role of treatment-related side effects and potential impact on quality of life. Eur J Cancer Care (Engl). 2019;28:e13051.

    Article  PubMed  Google Scholar 

  10. Schmidt ME, Wiskemann J, Steindorf K. Quality of life, problems, and needs of disease-free breast cancer survivors 5 years after diagnosis. Qual Life Res. 2018;27:2077–86.

    Article  PubMed  Google Scholar 

  11. Dickens E, Ahmed S. Principles of cancer treatment by chemotherapy. Surg Infect (Larchmt). 2018;36:134–8.

    Google Scholar 

  12. Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21093233.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Huang CY, Ju DT, Chang CF, Muralidhar RP, Velmurugan BK. A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer. Biomedicine (Taipei). 2017;7:23.

    Article  PubMed  Google Scholar 

  14. Colvin M, et al. Alkylating agents. In: Kufe DW, Pollock RE, Weichselbaum RR, Robert CBJ, Gansler TS, Holland JF, et al., editors. Holland-frei cancer medicine. Hamilton: BC Decker; 2003.

    Google Scholar 

  15. Ralhan R, Kaur J. Alkylating agents and cancer therapy. Expert Opin Ther Pat. 2007;17:1061–75.

    Article  CAS  Google Scholar 

  16. Amjad M.T., Chidharla A., and Kasi A., Cancer chemotherapy, StatPearls [Internet], StatPearls Publishing, 2021.

  17. Bertino JR. Cancer research: from folate antagonism to molecular targets. Best Pract Res Clin Haematol. 2009;22:577–82.

    Article  PubMed  Google Scholar 

  18. Malhotra V, Perry MC. Classical chemotherapy: mechanisms, toxicities and the therapeutic window. Cancer Biol Ther. 2003;2:S2-4.

    Article  PubMed  Google Scholar 

  19. Moiseeva A. Anthracycline derivatives and their anticancer activity. Apoptosis. 2019;25:26.

    Google Scholar 

  20. Cai F, Luis MAF, Lin X, Wang M, Cai L, Cen C, Biskup E. Anthracycline-induced cardiotoxicity in the chemotherapy treatment of breast cancer: preventive strategies and treatment. Mol Clin Oncol. 2019;11:15–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Qi C, Wang X, Shen Z, Chen S, Yu H, Williams N, Wang G. Anti-mitotic chemotherapeutics promote apoptosis through TL1A-activated death receptor 3 in cancer cells. Cell Res. 2018;28:544–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu J, Qu L, Meng L, Shou C. Topoisomerase inhibitors promote cancer cell motility via ROS-mediated activation of JAK2-STAT1-CXCL1 pathway. J Exp Clin Cancer Res. 2019;38:1–12.

    Article  Google Scholar 

  23. Madaan K, Kaushik D, Verma T. Hydroxyurea: a key player in cancer chemotherapy. Expert Rev Anticancer Ther. 2012;12:19–29.

    Article  CAS  PubMed  Google Scholar 

  24. Van Trimpont M, Peeters E, De Visser Y, Schalk AM, Mondelaers V, De Moerloose B, Lavie A, Lammens T, Goossens S, Van Vlierberghe P. Novel insights on the use of L-asparaginase as an efficient and safe anti-cancer therapy. Cancers. 2022;14:902.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pratt WB. The anticancer drugs. USA: Oxford University Press; 1994.

    Google Scholar 

  26. Paus R, Haslam IS, Sharov AA, Botchkarev VA. Pathobiology of chemotherapy-induced hair loss. Lancet Oncol. 2013;14:e50–9.

    Article  CAS  PubMed  Google Scholar 

  27. Freites-Martinez A, Shapiro J, Goldfarb S, Nangia J, Jimenez JJ, Paus R, Lacouture ME. Hair disorders in patients with cancer. J Am Acad Dermatol. 2019;80:1179–96.

    Article  PubMed  Google Scholar 

  28. Saraswat N, Chopra A, Sood A, Kamboj P, Kumar S. A descriptive study to analyze chemotherapy-induced hair loss and its psychosocial impact in adults: our experience from a tertiary care hospital. Indian Dermatol Online J. 2019;10:426.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Botchkarev VA. Molecular mechanisms of chemotherapy-induced hair loss. J Investig Dermatol Symp Proc. 2003;8:72–5.

    Article  CAS  PubMed  Google Scholar 

  30. Rubio-Gonzalez B, Juhasz M, Fortman J, Mesinkovska NA. Pathogenesis and treatment options for chemotherapy-induced alopecia: a systematic review. Int J Dermatol. 2018;57:1417–24.

    Article  PubMed  Google Scholar 

  31. Botchkarev VA, Komarova EA, Siebenhaar F, Botchkareva NV, Komarov PG, Maurer M, Gilchrest BA, Gudkov AV. p53 is essential for chemotherapy-induced hair loss. Can Res. 2000;60:5002–6.

    CAS  Google Scholar 

  32. Rossi A, Fortuna MC, Caro G, Pranteda G, Garelli V, Pompili U, Carlesimo M. Chemotherapy-induced alopecia management: clinical experience and practical advice. J Cosmet Dermatol. 2017;16:537–41.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shin H, Jo SJ, Kim DH, Kwon O, Myung SK. Efficacy of interventions for prevention of chemotherapy-induced alopecia: a systematic review and meta-analysis. Int J Cancer. 2015;136:E442–54.

    Article  CAS  PubMed  Google Scholar 

  34. Zajączkowska R, Kocot-Kępska M, Leppert W, Wrzosek A, Mika J, Wordliczek J. Mechanisms of chemotherapy-induced peripheral neuropathy. Int J Mol Sci. 2019;20:1451.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Park SB, Goldstein D, Krishnan AV, Lin CSY, Friedlander ML, Cassidy J, Koltzenburg M, Kiernan MC. Chemotherapy-induced peripheral neurotoxicity: a critical analysis. CA Cancer J Clin. 2013;63:419–37.

    Article  PubMed  Google Scholar 

  36. Areti A, Yerra VG, Naidu V, Kumar A. Oxidative stress and nerve damage: role in chemotherapy induced peripheral neuropathy. Redox Biol. 2014;2:289–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Loprinzi C, Le-Rademacher JG, Majithia N, McMurray RP, O’Neill CR, Bendel MA, Beutler A, Lachance DH, Cheville A, Strick DM, Black DF, Tilburt JC, Smith TJ. Scrambler therapy for chemotherapy neuropathy: a randomized phase II pilot trial. Support Care Cancer. 2020;28:1183–97.

    Article  PubMed  Google Scholar 

  38. Fradkin M, Batash R, Elmaleh S, Debi R, Schaffer P, Schaffer M, Asna N. Management of peripheral neuropathy induced by chemotherapy. Curr Med Chem. 2019;26:4698–708.

    Article  CAS  PubMed  Google Scholar 

  39. Cohen L, De Moor CA, Eisenberg P, Ming EE, Hu H. Chemotherapy-induced nausea and vomiting—incidence and impact on patient quality of life at community oncology settings. Support Care Cancer. 2007;15:497–503.

    Article  PubMed  Google Scholar 

  40. Herrstedt J, Roila F, Warr D, Celio L, Navari RM, Hesketh PJ, Chan A, Aapro MS. 2016 Updated MASCC/ESMO consensus recommendations: prevention of nausea and vomiting following high emetic risk chemotherapy. Support Care Cancer. 2017;25:277–88.

    Article  PubMed  Google Scholar 

  41. Cubeddu LX. Serotonin mechanisms in chemotherapy-induced emesis in cancer patients. Oncology. 1996;53(Suppl 1):18–25.

    Article  PubMed  Google Scholar 

  42. Aziz F. Neurokinin-1 receptor antagonists for chemotherapy-induced nausea and vomiting. Ann Palliat Med. 2012;1:130–6.

    PubMed  Google Scholar 

  43. Tonini M, Cipollina L, Poluzzi E, Crema F, Corazza GR, De Ponti F. Review article: clinical implications of enteric and central D2 receptor blockade by antidopaminergic gastrointestinal prokinetics. Aliment Pharmacol Ther. 2004;19:379–90.

    Article  CAS  PubMed  Google Scholar 

  44. Vidall C, Dielenseger P, Farrell C, Lennan E, Muxagata P, Fernandez-Ortega P, Paradies K. Evidence-based management of chemotherapy-induced nausea and vomiting: a position statement from a European cancer nursing forum. Ecancermedicalscience. 2011;5:211.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Vidall C, Fernandez-Ortega P, Cortinovis D, Jahn P, Amlani B, Scotte F. Impact and management of chemotherapy/radiotherapy-induced nausea and vomiting and the perceptual gap between oncologists/oncology nurses and patients: a cross-sectional multinational survey. Support Care Cancer. 2015;23:3297–305.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Madeddu C, Deidda M, Piras A, Cadeddu C, Demurtas L, Puzzoni M, Piscopo G, Scartozzi M, Mercuro G. Pathophysiology of cardiotoxicity induced by nonanthracycline chemotherapy. J Cardiovasc Med (Hagerstown). 2016;17(Suppl 1):S12–8.

    Article  CAS  PubMed  Google Scholar 

  47. Doroshow JH, Locker GY, Myers CE. Enzymatic defenses of the mouse heart against reactive oxygen metabolites: alterations produced by doxorubicin. J Clin Invest. 1980;65:128–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Goffart S, von Kleist-Retzow JC, Wiesner RJ. Regulation of mitochondrial proliferation in the heart: power-plant failure contributes to cardiac failure in hypertrophy. Cardiovasc Res. 2004;64:198–207.

    Article  CAS  PubMed  Google Scholar 

  49. Angsutararux P, Luanpitpong S, Issaragrisil S. Chemotherapy-induced cardiotoxicity: overview of the roles of oxidative stress. Oxid Med Cell Longev. 2015;2015:795602.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Huang J, Wu R, Chen L, Yang Z, Yan D, Li M. Understanding anthracycline cardiotoxicity from mitochondrial aspect. Front Pharmacol. 2022;13:811406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jiji RS, Kramer CM, Salerno M. Non-invasive imaging and monitoring cardiotoxicity of cancer therapeutic drugs. J Nucl Cardiol. 2012;19:377–88.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Truong J, Yan AT, Cramarossa G, Chan KK. Chemotherapy-induced cardiotoxicity: detection, prevention, and management. Can J Cardiol. 2014;30:869–78.

    Article  PubMed  Google Scholar 

  53. Benson AB 3rd, Ajani JA, Catalano RB, Engelking C, Kornblau SM, Martenson JA Jr, McCallum R, Mitchell EP, O’Dorisio TM, Vokes EE, Wadler S. Recommended guidelines for the treatment of cancer treatment-induced diarrhea. J Clin Oncol. 2004;22:2918–26.

    Article  CAS  PubMed  Google Scholar 

  54. McQuade RM, Stojanovska V, Abalo R, Bornstein JC, Nurgali K. Chemotherapy-induced constipation and diarrhea: pathophysiology current and emerging treatments. Front Pharmacol. 2016;7:414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Andreyev J, Ross P, Donnellan C, Lennan E, Leonard P, Waters C, Wedlake L, Bridgewater J, Glynne-Jones R, Allum W, Chau I, Wilson R, Ferry D. Guidance on the management of diarrhoea during cancer chemotherapy. Lancet Oncol. 2014;15:e447–60.

    Article  PubMed  Google Scholar 

  56. Stein A, Voigt W, Jordan K. Chemotherapy-induced diarrhea: pathophysiology, frequency and guideline-based management. Ther Adv Med Oncol. 2010;2:51–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gracia CR, Sammel MD, Freeman E, Prewitt M, Carlson C, Ray A, Vance A, Ginsberg JP. Impact of cancer therapies on ovarian reserve. Fertil Steril. 2012;97(134–40): e1.

    Google Scholar 

  58. De Vos M, Devroey P, Fauser BC. Primary ovarian insufficiency. The Lancet. 2010;376:911–21.

    Article  Google Scholar 

  59. Meistrich ML. Male gonadal toxicity. Pediatr Blood Cancer. 2009;53:261–6.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Font-Gonzalez A, Mulder RL, Loeffen EA, Byrne J, van Dulmen-den Broeder E, van den Heuvel-Eibrink MM, Hudson MM, Kenney LB, Levine JM, Tissing WJ, van de Wetering MD, Kremer LC, PanCare LC. Fertility preservation in children, adolescents, and young adults with cancer: quality of clinical practice guidelines and variations in recommendations. Cancer. 2016;122:2216–23.

    Article  PubMed  Google Scholar 

  61. Practice Committee of American Society for Reproductive Medicine. Fertility preservation in patients undergoing gonadotoxic therapy or gonadectomy: a committee opinion. Fertil Steril. 2013;100:1214–23.

    Article  Google Scholar 

  62. Oktay K, Harvey BE, Partridge AH, Quinn GP, Reinecke J, Taylor HS, Wallace WH, Wang ET, Loren AW. Fertility preservation in patients with cancer: ASCO clinical practice guideline update. J Clin Oncol. 2018;36:1994–2001.

    Article  PubMed  Google Scholar 

  63. Boykoff N, Moieni M, Subramanian SK. Confronting chemobrain: an in-depth look at survivors’ reports of impact on work, social networks, and health care response. J Cancer Surviv. 2009;3:223–32.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Li M, Caeyenberghs K. Longitudinal assessment of chemotherapy-induced changes in brain and cognitive functioning: a systematic review. Neurosci Biobehav Rev. 2018;92:304–17.

    Article  PubMed  Google Scholar 

  65. Keeney JTR, Ren X, Warrier G, Noel T, Powell DK, Brelsfoard JM, Sultana R, Saatman KE, Clair DKS, Butterfield DA. Doxorubicin-induced elevated oxidative stress and neurochemical alterations in brain and cognitive decline: protection by MESNA and insights into mechanisms of chemotherapy-induced cognitive impairment (“chemobrain”). Oncotarget. 2018;9:30324–39.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ren X, Keeney JTR, Miriyala S, Noel T, Powell DK, Chaiswing L, Bondada S, St Clair DK, Butterfield DA. The triangle of death of neurons: oxidative damage, mitochondrial dysfunction, and loss of choline-containing biomolecules in brains of mice treated with doxorubicin. Advanced insights into mechanisms of chemotherapy induced cognitive impairment (“chemobrain”) involving TNF-alpha. Free Radic Biol Med. 2019;134:1–8.

    Article  CAS  PubMed  Google Scholar 

  67. Wang XM, Walitt B, Saligan L, Tiwari AF, Cheung CW, Zhang ZJ. Chemobrain: a critical review and causal hypothesis of link between cytokines and epigenetic reprogramming associated with chemotherapy. Cytokine. 2015;72:86–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vega JN, Dumas J, Newhouse PA. Cognitive effects of chemotherapy and cancer-related treatments in older adults. Am J Geriatr Psychiatry. 2017;25:1415–26.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Vance DE, Frank JS, Bail J, Triebel KL, Niccolai LM, Gerstenecker A, Meneses K. Interventions for cognitive deficits in breast cancer survivors treated with chemotherapy. Cancer Nurs. 2017;40:E11-27.

    Article  PubMed  Google Scholar 

  70. Binotto M, Reinert T, Werutsky G, Zaffaroni F, Schwartsmann G. Health-related quality of life before and during chemotherapy in patients with early-stage breast cancer. ecancermedicalscience. 2020. https://doi.org/10.3332/ecancer.2020.1007.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Jacobs JM, Ream ME, Pensak N, Nisotel LE, Fishbein JN, MacDonald JJ, Buzaglo J, Lennes IT, Safren SA, Pirl WF, Temel JS, Greer JA. Patient experiences with oral chemotherapy: adherence, symptoms, and quality of life. J Natl Compr Canc Netw. 2019;17:221–8.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Soveri LM, Lamminmaki A, Hanninen UA, Karhunen M, Bono P, Osterlund P. Long-term neuropathy and quality of life in colorectal cancer patients treated with oxaliplatin containing adjuvant chemotherapy. Acta Oncol. 2019;58:398–406.

    Article  CAS  PubMed  Google Scholar 

  73. Kaltenmeier C, Malik J, Yazdani H, Geller DA, Medich D, Zureikat A, Tohme S. Refusal of cancer-directed treatment by colon cancer patients: risk factors and survival outcomes. Am J Surg. 2020;220:1605–12.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yu F, Li Y, Zou J, Jiang L, Wang C, Tang Y, Gao B, Luo D, Jiang X. The Chinese herb Xiaoaiping protects against breast cancer chemotherapy-induced alopecia and other side effects: a randomized controlled trial. J Int Med Res. 2019;47:2607–14.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kapoor R, Shome D, Doshi K, Patel G, Vadera S. Evaluation of efficacy of QR 678 and QR678 neo hair growth factor formulation for the treatment of female pattern alopecia in patients with PCOS—A prospective study. J Cosmet Dermatol. 2020;19:2637–46.

    Article  PubMed  Google Scholar 

  76. Kuo AM-S, Reingold RE, Ketosugbo K, Pan A, Dusza SW, Kraehenbuehl L, Gajria D, Lake DE, Bromberg J, Goldfarb SB. Oral minoxidil for the treatment of late alopecia in cancer survivors. Proc Am Soc Clin Oncol. 2022. https://doi.org/10.1200/JCO.2022.40.16_suppl.12022.

    Article  Google Scholar 

  77. Messenger AG, Rundegren J. Minoxidil: mechanisms of action on hair growth. Br J Dermatol. 2004;150:186–94.

    Article  CAS  PubMed  Google Scholar 

  78. Lyakhovitsky A, Segal O, Maly A, Zlotogorski A, Barzilai A. Permanent chemotherapy-induced alopecia after hematopoietic stem cell transplantation treated with low-dose oral minoxidil. JAAD Case Rep. 2022;22:64–7.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lee TJ, Kang HK, Berry JC, Joo HG, Park C, Miller MJ, Choi K. ER71/ETV2 promotes hair regeneration from chemotherapeutic drug-induced hair loss by enhancing angiogenesis. Biomol Ther (Seoul). 2021;29:545–50.

    Article  CAS  PubMed  Google Scholar 

  80. Ghavami H, Arjomand L, Radfar M, Khalkhali HR. Effects of reflexology massage on hair regrowth after chemotherapy-induced alopecia among women with cancer: a randomised clinical trial. Bezmialem Sci. 2020;8:215.

    Article  Google Scholar 

  81. Zeng Z, Qi J, Wan Q, Zu Y. Aptamers with self-loading drug payload and ph-controlled drug release for targeted chemotherapy. Pharmaceutics. 2021. https://doi.org/10.3390/pharmaceutics13081221.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Rosenbaek F, Holm HS, Hjelmborg JVB, Ewertz M, Jensen JD. Effect of cryotherapy on dose of adjuvant paclitaxel in early-stage breast cancer. Support Care Cancer. 2020;28:3763–9.

    Article  CAS  PubMed  Google Scholar 

  83. Hanai A, Ishiguro H, Sozu T, Tsuda M, Yano I, Nakagawa T, Imai S, Hamabe Y, Toi M, Arai H, Tsuboyama T. Effects of cryotherapy on objective and subjective symptoms of paclitaxel-induced neuropathy: prospective self-controlled trial. J Natl Cancer Inst. 2018;110:141–8.

    Article  CAS  PubMed  Google Scholar 

  84. Bailey AG, Brown JN, Hammond JM. Cryotherapy for the prevention of chemotherapy-induced peripheral neuropathy: a systematic review. J Oncol Pharm Pract. 2021;27:156–64.

    Article  CAS  PubMed  Google Scholar 

  85. D’Alessandro EG, Nebuloni Nagy DR, de Brito CMM, Almeida EPM, Battistella LR, Cecatto RB. Acupuncture for chemotherapy-induced peripheral neuropathy: a randomised controlled pilot study. BMJ Support Palliat Care. 2022;12:64–72.

    Article  PubMed  Google Scholar 

  86. Stringer J, Ryder WD, Mackereth PA, Misra V, Wardley AM. A randomised, pragmatic clinical trial of ACUpuncture plus standard care versus standard care alone FOr Chemotherapy Induced peripheral Neuropathy (ACUFOCIN). Eur J Oncol Nurs. 2022;60:102171.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Childs DS, Le-Rademacher JG, McMurray R, Bendel M, O’Neill C, Smith TJ, Loprinzi CL. Randomized trial of scrambler therapy for chemotherapy-induced peripheral neuropathy: crossover analysis. J Pain Symptom Manage. 2021;61:1247–53.

    Article  PubMed  Google Scholar 

  88. Loprinzi CL, Lacchetti C, Bleeker J, Cavaletti G, Chauhan C, Hertz DL, Kelley MR, Lavino A, Lustberg MB, Paice JA. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: ASCO guideline update. ASCO. 2020. https://doi.org/10.1200/JCO.20.01399.

    Article  Google Scholar 

  89. Tomasello C, Pinto RM, Mennini C, Conicella E, Stoppa F, Raucci U. Scrambler therapy efficacy and safety for neuropathic pain correlated with chemotherapy-induced peripheral neuropathy in adolescents: a preliminary study. Pediatr Blood Cancer. 2018;65:e27064.

    Article  PubMed  Google Scholar 

  90. Smith TJ, Razzak AR, Blackford AL, Ensminger J, Saiki C, Longo-Schoberlein D, Loprinzi CL. A pilot randomized sham-controlled trial of MC5-A scrambler therapy in the treatment of chronic chemotherapy-induced peripheral neuropathy (CIPN). J Palliat Care. 2020;35:53–8.

    Article  PubMed  Google Scholar 

  91. Li QW, Yu MW, Wang XM, Yang GW, Wang H, Zhang CX, Xue N, Xu WR, Zhang Y, Cheng PY, Yang L, Fu Q, Yang Z. Efficacy of acupuncture in the prevention and treatment of chemotherapy-induced nausea and vomiting in patients with advanced cancer: a multi-center, single-blind, randomized, sham-controlled clinical research. Chin Med. 2020;15:57.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Maeng CH, Lee S, Han JJ, Kim HJ, Nam D, Lee J, Baek SK. Effect of acupuncture on delayed emesis for the patients who received high-emetogenic chemotherapy with standard antiemetic prophylaxis (KHMC-HO-01): an open-label, randomized study. Evid Based Complement Alternat Med. 2022;2022:9688727.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Wen Q, Zhao Y, Liu J, Liu M, Yan J, Li N. Effects of acupuncture and moxibustion at different times on the nausea and vomiting induced with chemotherapy: a self cross control study. Zhongguo Zhen jiu = Chin Acupunct Moxib. 2018;38:690–4.

    Google Scholar 

  94. Li W, Li L. Effect of moxibustion on prevention and treatment of nausea and vomiting caused by cisplatin in lung cancer. Zhongguo Zhen Jiu. 2018;38:695–9.

    PubMed  Google Scholar 

  95. Cao J, Ouyang Q, Wang S, Ragaz J, Wang X, Teng Y, Wang B, Wang Z, Zhang J, Wang L. Mirtazapine, a dopamine receptor inhibitor, as a secondary prophylactic for delayed nausea and vomiting following highly emetogenic chemotherapy: an open label, randomized, multicenter phase III trial. Invest New Drugs. 2020;38:507–14.

    Article  CAS  PubMed  Google Scholar 

  96. Jeon S-Y, Han HS, Bae WK, Park M-R, Shim H, Lee S-C, Go S-I, Yun HJ, Im Y-J, Song E-K. A randomized, double-blind, placebo-controlled study of the safety and efficacy of olanzapine for the prevention of chemotherapy-induced nausea and vomiting in patients receiving moderately emetogenic chemotherapy: results of the Korean South West Oncology Group (KSWOG) study. Cancer Res Treatment: Off J Korean Cancer Assoc. 2019;51:90–7.

    Article  CAS  Google Scholar 

  97. Yeo W, Lau TK, Li L, Lai KT, Pang E, Cheung M, Chan VT, Wong A, Soo WM, Yeung VT, Tse T, Lam DC, Yeung EW, Ng KP, Tang NL, Tong M, Suen JJ, Mo FK. A randomized study of olanzapine-containing versus standard antiemetic regimens for the prevention of chemotherapy-induced nausea and vomiting in Chinese breast cancer patients. Breast. 2020;50:30–8.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hudiyawati D., Devi A., Rosyid F., and Primalia P., The Effect of Aromatherapy of Cardamom on Chemotherapy Induced Nausea and Vomiting Among Cancer Patients, International Conference on Health and Well-Being (ICHWB 2021), Atlantis Press, 2022, pp. 150–155.

  99. Efe EN, Tasci S. The effects of peppermint oil on nausea, vomiting and retching in cancer patients undergoing chemotherapy: an open label quasi-randomized controlled pilot study. Complement Ther Med. 2021;56:102587.

    Article  Google Scholar 

  100. Mapp CP, Hostetler D, Sable JF, Parker C, Gouge E, Masterson M, Willis-Styles M, Fortner C, Higgins M. Peppermint oil: evaluating efficacy on nausea in patients receiving chemotherapy in the ambulatory setting. Clin J Oncol Nurs. 2020;24:160–4.

    Article  PubMed  Google Scholar 

  101. Wang J, Yao L, Wu X, Guo Q, Sun S, Li J, Shi G, Caldwell RB, Caldwell RW, Chen Y. Protection against doxorubicin-induced cardiotoxicity through modulating iNOS/ARG 2 balance by electroacupuncture at PC6. Oxid Med Cell longev. 2021. https://doi.org/10.1155/2021/6628957.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Qu J, Ke F, Yang X, Wang Y, Xu H, Li Q, Bi K. Induction of P-glycoprotein expression by dandelion in tumor and heart tissues: Impact on the anti-tumor activity and cardiotoxicity of doxorubicin. Phytomedicine. 2022;104:154275.

    Article  CAS  PubMed  Google Scholar 

  103. Hafez HM, Hassanein H. Montelukast ameliorates doxorubicin-induced cardiotoxicity via modulation of p-glycoprotein and inhibition of ROS-mediated TNF-alpha/NF-kappaB pathways. Drug Chem Toxicol. 2022;45:548–59.

    Article  CAS  PubMed  Google Scholar 

  104. Sun X, Song Y, Xie Y, Han J, Chen F, Sun Y, Sui B, Jiang D. Shenlijia attenuates doxorubicin-induced chronic heart failure by inhibiting cardiac fibrosis. Evid Based Complement Alternat Med. 2021;2021:6659676.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Shubhra QTH, Guo K, Liu Y, Razzak M, Serajum MM, Moshiul Alam AKM. Dual targeting smart drug delivery system for multimodal synergistic combination cancer therapy with reduced cardiotoxicity. Acta Biomater. 2021;131:493–507.

    Article  CAS  PubMed  Google Scholar 

  106. Sun W, Zhao P, Zhou Y, Xing C, Zhao L, Li Z, Yuan L. Ultrasound targeted microbubble destruction assisted exosomal delivery of miR-21 protects the heart from chemotherapy associated cardiotoxicity. Biochem Biophys Res Commun. 2020;532:60–7.

    Article  CAS  PubMed  Google Scholar 

  107. Dragojevic S, Ryu JS, Hall ME, Raucher D. Targeted drug delivery biopolymers effectively inhibit breast tumor growth and prevent doxorubicin-induced cardiotoxicity. Molecules. 2022. https://doi.org/10.3390/molecules27113371.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Sun F, Wang J, Wu X, Yang CS, Zhang J. Selenium nanoparticles act as an intestinal p53 inhibitor mitigating chemotherapy-induced diarrhea in mice. Pharmacol Res. 2019;149:104475.

    Article  CAS  PubMed  Google Scholar 

  109. Yu Y, Kong R, Cao H, Yin Z, Liu J, Nan X, Phan AT, Ding T, Zhao H, Wong STC. Two birds, one stone: hesperetin alleviates chemotherapy-induced diarrhea and potentiates tumor inhibition. Oncotarget. 2018;9:27958–73.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Tyler RC, Zeng W, Li W, Chen L, Liu S, Zhang S. Preclinical study of OQL051, a gut-restricted CDK4/6 inhibitor for chemotherapy-induced diarrhea. Am Soc Clin Oncol. 2022. https://doi.org/10.1200/JCO.2022.40.16_suppl.e24085.

    Article  Google Scholar 

  111. Chan YT, Cheung F, Zhang C, Fu B, Tan HY, Norimoto H, Wang N, Feng Y. Ancient Chinese Medicine Herbal Formula Huanglian Jiedu Decoction as a Neoadjuvant Treatment of Chemotherapy by Improving Diarrhea and Tumor Response. Front Pharmacol. 2020;11:252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wu Y, Wang D, Yang X, Fu C, Zou L, Zhang J. Traditional Chinese medicine Gegen Qinlian decoction ameliorates irinotecan chemotherapy-induced gut toxicity in mice. Biomed Pharmacother. 2019;109:2252–61.

    Article  CAS  PubMed  Google Scholar 

  113. Tian Y, Li M, Song W, Jiang R, Li YQ. Effects of probiotics on chemotherapy in patients with lung cancer. Oncol Lett. 2019;17:2836–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Lu D, Yan J, Liu F, Ding P, Chen B, Lu Y, Sun Z. Probiotics in preventing and treating chemotherapy-induced diarrhea: a meta-analysis. Asia Pac J Clin Nutr. 2019;28:701–10.

    CAS  PubMed  Google Scholar 

  115. Wardill HR, Van Sebille YZA, Ciorba MA, Bowen JM. Prophylactic probiotics for cancer therapy-induced diarrhoea: a meta-analysis. Curr Opin Support Palliat Care. 2018;12:187–97.

    Article  PubMed  Google Scholar 

  116. Mohamed SA, Shalaby S, Brakta S, Elam L, Elsharoud A, Al-Hendy A. Umbilical cord blood mesenchymal stem cells as an infertility treatment for chemotherapy induced premature ovarian insufficiency. Biomedicines. 2019;7:7.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Nguyen QN, Zerafa N, Liew SH, Morgan FH, Strasser A, Scott CL, Findlay JK, Hickey M, Hutt KJ. Loss of PUMA protects the ovarian reserve during DNA-damaging chemotherapy and preserves fertility. Cell Death Dis. 2018;9:618.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Mohamed SA, Shalaby SM, Abdelaziz M, Brakta S, Hill WD, Ismail N, Al-Hendy A. Human mesenchymal stem cells partially reverse infertility in chemotherapy-induced ovarian failure. Reprod Sci. 2018;25:51–63.

    Article  CAS  PubMed  Google Scholar 

  119. Huang J, Shan W, Li N, Zhou B, Guo E, Xia M, Lu H, Wu Y, Chen J, Wang B, Xi L, Ma D, Chen G, Li K, Sun C. Melatonin provides protection against cisplatin-induced ovarian damage and loss of fertility in mice. Reprod Biomed Online. 2021;42:505–19.

    Article  CAS  PubMed  Google Scholar 

  120. Lu J, Liu Z, Shu M, Zhang L, Xia W, Tang L, Li J, Huang B, Li H. Human placental mesenchymal stem cells ameliorate chemotherapy-induced damage in the testis by reducing apoptosis/oxidative stress and promoting autophagy. Stem Cell Res Ther. 2021;12:199.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Mashiach J, Zohni K, Lopez L, Filice M, Garcia M, Wyse B, Glass K, Dviri M, Baram S, Gauthier-Fisher A, Librach CL. Human umbilical cord perivascular cells prevent chemotherapeutic drug-induced male infertility in a mouse model. F S Sci. 2021;2:24–32.

    PubMed  Google Scholar 

  122. Michailov Y, AbuMadighem A, Lunenfeld E, Kapelushnik J, Huleihel M. Granulocyte colony-stimulating factor restored impaired spermatogenesis and fertility in an AML-chemotherapy mice model. Int J Mol Sci. 2021;22:11157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hassan AH, Jasim WK. Investigation the anti-sterility role of ubiquinone-10 against procarbazine-induced infertility in male rats. Indian J Forens Med Toxicol. 2020;14:1311.

    CAS  Google Scholar 

  124. Hajjar T, Soleymani F, Vatanchian M. Protective effect of vitamin C and zinc as an antioxidant against chemotherapy-induced male reproductive toxicity. J Med Life. 2020;13:138.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Tong T, Pei C, Chen J, Lv Q, Zhang F, Cheng Z. Efficacy of acupuncture therapy for chemotherapy-related cognitive impairment in breast cancer patients. Med Sci Monit. 2018;24:2919–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhang ZJ, Man SC, Yam LL, Yiu CY, Leung RC, Qin ZS, Chan KS, Lee VHF, Kwong A, Yeung WF, So WKW, Ho LM, Dong YY. Electroacupuncture trigeminal nerve stimulation plus body acupuncture for chemotherapy-induced cognitive impairment in breast cancer patients: an assessor-participant blinded, randomized controlled trial. Brain Behav Immun. 2020;88:88–96.

    Article  CAS  PubMed  Google Scholar 

  127. Seo EJ, Klauck SM, Efferth T, Panossian A. Adaptogens in chemobrain (Part I): plant extracts attenuate cancer chemotherapy-induced cognitive impairment—Transcriptome-wide microarray profiles of neuroglia cells. Phytomedicine. 2019;55:80–91.

    Article  CAS  PubMed  Google Scholar 

  128. Duval A, Davis CG, Khoo EL, Romanow H, Shergill Y, Rice D, Smith AM, Poulin PA, Collins B. Mindfulness-based stress reduction and cognitive function among breast cancer survivors: a randomized controlled trial. Cancer. 2022. https://doi.org/10.1002/cncr.34209.

    Article  PubMed  Google Scholar 

  129. Henneghan AM, Becker H, Harrison ML, Inselmann K, Fico B, Schafer H, King E, Patt D, Kesler S. A randomized control trial of meditation compared to music listening to improve cognitive function for breast cancer survivors: feasibility and acceptability. Complement Ther Clin Pract. 2020;41:101228.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Myers JS, Mitchell M, Krigel S, Steinhoff A, Boyce-White A, Van Goethem K, Valla M, Dai J, He J, Liu W, Sereika SM, Bender CM. Qigong intervention for breast cancer survivors with complaints of decreased cognitive function. Support Care Cancer. 2019;27:1395–403.

    Article  PubMed  Google Scholar 

  131. Chen Y, Sheng J, Tang X, Zhao Y, Zhu S, Liu Q. Clemastine rescues chemotherapy-induced cognitive impairment by improving white matter integrity. Neuroscience. 2022;484:66–79.

    Article  CAS  PubMed  Google Scholar 

  132. Alexander JF, Seua AV, Arroyo LD, Ray PR, Wangzhou A, Heibeta-Luckemann L, Schedlowski M, Price TJ, Kavelaars A, Heijnen CJ. Nasal administration of mitochondria reverses chemotherapy-induced cognitive deficits. Theranostics. 2021;11:3109–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Jiang ZG, Winocur G, Wojtowicz JM, Shevtsova O, Fuller S, Ghanbari HA. PAN-811 prevents chemotherapy-induced cognitive impairment and preserves neurogenesis in the hippocampus of adult rats. PLoS ONE. 2018;13:e0191866.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

B performed a literature search, analyzed the data, drafted and edited the manuscript. SHL conceived, critically reviewed, and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sau Har Lee.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brianna, Lee, S.H. Chemotherapy: how to reduce its adverse effects while maintaining the potency?. Med Oncol 40, 88 (2023). https://doi.org/10.1007/s12032-023-01954-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-01954-6

Keywords

Navigation